Skip to main content

Division by Zero in Common Meadows

  • Chapter

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 8950)

Abstract

Common meadows are fields expanded with a total multiplicative inverse function. Division by zero produces an additional value denoted with “\({\textup{\textbf{a}}}\)” that propagates through all operations of the meadow signature (this additional value can be interpreted as an error element). We provide a basis theorem for so-called common cancellation meadows of characteristic zero, that is, common meadows of characteristic zero that admit a certain cancellation law.

Keywords

  • Meadow
  • common meadow
  • division by zero
  • additional value
  • abstract datatype

This paper is dedicated to Martin Wirsing on the occasion of his emeritation; an earlier version appeared as report arXiv:1406.6878v1 [math.RA], 26 June 2014.

This is a preview of subscription content, access via your institution.

Buying options

eBook
USD   6.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergstra, J.A., Bethke, I., Ponse, A.: Cancellation meadows: a generic basis theorem and some applications. The Computer Journal 56(1), 3–14 (2013)

    CrossRef  Google Scholar 

  2. Bergstra, J.A., Bethke, I., Ponse, A.: Equations for formally real meadows. arXiv:1310.5011v3 [math.RA, cs.LO], this version (v3) (February 11, 2014)

    Google Scholar 

  3. Bergstra, J.A., Broy, M., Tucker, J.V., Wirsing, M.: On the power of algebraic specifications. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 193–204. Springer, Heidelberg (1981)

    Google Scholar 

  4. Bergstra, J.A., Middelburg, C.A.: Inversive meadows and divisive meadows. Journal of Applied Logic 9(3), 203–220 (2011), doi:10.1016/j.jal.2011.03.001

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Bergstra, J.A., Middelburg, C.A.: Division by zero in non-involutive meadows. arXiv:1406.2092v1 [math.RA] (June 9, 2014). To appear in Journal of Applied Logic 13(1), 1–12 (2015), doi:10.1016/j.jal.2014.10.001

    Google Scholar 

  6. Bergstra, J.A., Ponse, A.: Signed meadow valued probability mass functions. arXiv:1307.5173v1 [math.LO] (July 19, 2013)

    Google Scholar 

  7. Bergstra, J.A., Ponse, A.: Fracpairs: fractions over a reduced commutative ring. arXiv:1411.4410v1 [math.RA] (November 17, 2014)

    Google Scholar 

  8. Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. Journal of the ACM 54(2), Article 7, 25 pages (2007)

    Google Scholar 

  9. Bethke, I., Rodenburg, P.H.: The initial meadows. Journal of Symbolic Logic 75(3), 888–895 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Broy, M., Wirsing, M.: On the algebraic specification of nondeterministic programming languages. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 162–179. Springer, Heidelberg (1981)

    CrossRef  Google Scholar 

  11. Carlström, J.: Wheels – on division by zero. Mathematical Structures in Computer Science 14(01), 143–184 (2004), doi:10.1017/S0960129503004110

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Komori, Y.: Free algebras over all fields and pseudo-fields. Report 10, pp. 9–15, Faculty of Science, Shizuoka University, Japan (1975)

    Google Scholar 

  13. Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics, vol. 211. Springer (2002)

    Google Scholar 

  14. Ono, H.: Equational theories and universal theories of fields. Journal of the Mathematical Society of Japan 35(2), 289–306 (1983)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Wirsing, M.: Algebraic specifications. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Volume B: Formal models and semantics, pp. 675–788. North-Holland (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bergstra, J.A., Ponse, A. (2015). Division by Zero in Common Meadows. In: De Nicola, R., Hennicker, R. (eds) Software, Services, and Systems. Lecture Notes in Computer Science, vol 8950. Springer, Cham. https://doi.org/10.1007/978-3-319-15545-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15545-6_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15544-9

  • Online ISBN: 978-3-319-15545-6

  • eBook Packages: Computer ScienceComputer Science (R0)