Abstract
Common meadows are fields expanded with a total multiplicative inverse function. Division by zero produces an additional value denoted with “\({\textup{\textbf{a}}}\)” that propagates through all operations of the meadow signature (this additional value can be interpreted as an error element). We provide a basis theorem for so-called common cancellation meadows of characteristic zero, that is, common meadows of characteristic zero that admit a certain cancellation law.
Keywords
- Meadow
- common meadow
- division by zero
- additional value
- abstract datatype
This paper is dedicated to Martin Wirsing on the occasion of his emeritation; an earlier version appeared as report arXiv:1406.6878v1 [math.RA], 26 June 2014.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Bergstra, J.A., Bethke, I., Ponse, A.: Cancellation meadows: a generic basis theorem and some applications. The Computer Journal 56(1), 3–14 (2013)
Bergstra, J.A., Bethke, I., Ponse, A.: Equations for formally real meadows. arXiv:1310.5011v3 [math.RA, cs.LO], this version (v3) (February 11, 2014)
Bergstra, J.A., Broy, M., Tucker, J.V., Wirsing, M.: On the power of algebraic specifications. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 193–204. Springer, Heidelberg (1981)
Bergstra, J.A., Middelburg, C.A.: Inversive meadows and divisive meadows. Journal of Applied Logic 9(3), 203–220 (2011), doi:10.1016/j.jal.2011.03.001
Bergstra, J.A., Middelburg, C.A.: Division by zero in non-involutive meadows. arXiv:1406.2092v1 [math.RA] (June 9, 2014). To appear in Journal of Applied Logic 13(1), 1–12 (2015), doi:10.1016/j.jal.2014.10.001
Bergstra, J.A., Ponse, A.: Signed meadow valued probability mass functions. arXiv:1307.5173v1 [math.LO] (July 19, 2013)
Bergstra, J.A., Ponse, A.: Fracpairs: fractions over a reduced commutative ring. arXiv:1411.4410v1 [math.RA] (November 17, 2014)
Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. Journal of the ACM 54(2), Article 7, 25 pages (2007)
Bethke, I., Rodenburg, P.H.: The initial meadows. Journal of Symbolic Logic 75(3), 888–895 (2010)
Broy, M., Wirsing, M.: On the algebraic specification of nondeterministic programming languages. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 162–179. Springer, Heidelberg (1981)
Carlström, J.: Wheels – on division by zero. Mathematical Structures in Computer Science 14(01), 143–184 (2004), doi:10.1017/S0960129503004110
Komori, Y.: Free algebras over all fields and pseudo-fields. Report 10, pp. 9–15, Faculty of Science, Shizuoka University, Japan (1975)
Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics, vol. 211. Springer (2002)
Ono, H.: Equational theories and universal theories of fields. Journal of the Mathematical Society of Japan 35(2), 289–306 (1983)
Wirsing, M.: Algebraic specifications. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Volume B: Formal models and semantics, pp. 675–788. North-Holland (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Bergstra, J.A., Ponse, A. (2015). Division by Zero in Common Meadows. In: De Nicola, R., Hennicker, R. (eds) Software, Services, and Systems. Lecture Notes in Computer Science, vol 8950. Springer, Cham. https://doi.org/10.1007/978-3-319-15545-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-15545-6_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15544-9
Online ISBN: 978-3-319-15545-6
eBook Packages: Computer ScienceComputer Science (R0)
