The KnowLang Approach to Self-adaptation

  • Emil Vassev
  • Mike Hinchey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8950)


Self-adaptive systems autonomously monitor their behavior and eventually modify that behavior according to changes in the operational environment or in the system itself. In this entry, we present an approach to implementing self-adaptation capabilities with KnowLang, a special framework for knowledge representation and reasoning. KnowLang provides for a special knowledge context and a special reasoner operating in that context. The approach is formal and demonstrates how knowledge representation and reasoning help to establish the vital connection between knowledge, perception, and actions that realize self-adaptive behavior. Knowledge is used against the perception of the world to generate appropriate actions in compliance with some set of goals and beliefs.


Bayesian Network Boolean Function Knowledge Representation Action Execution Boolean Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems: State of the art and research challenges. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Soft-Ware Intensive Systems. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    InterLink Project, (last accessed: November 7, 2014)
  3. 3.
    Vassev, E., Hinchey, M.: Knowledge representation for cognitive robotic systems. In: Proceedings of the 15th IEEE International Symposium on Object/Component/Service-oriented Real-time Distributed Computing Workshops (ISCORCW 2012), pp. 156–163. IEEE Computer Society (2012)Google Scholar
  4. 4.
    Vassev, E., Hinchey, M., Gaudin, B.: Knowledge representation for self-adaptive behavior. In: Proceedings of C* Conference on Computer Science & Software Engineering (C3S2E 2012), pp. 113–117. ACM (2012)Google Scholar
  5. 5.
    Vassev, E., Hinchey, M., Montanari, U., Bicocchi, N., Zambonelli, F., Wirsing, M.: D3.2: Second Report on WP3: The KnowLang Framework for Knowledge Modeling for SCE Systems. ASCENS Deliverable (2012)Google Scholar
  6. 6.
    ASCENS: ASCENS - Autonomic Service-Component Ensembles (2012),
  7. 7.
    Serbedzija, N., Massink, M., Pinciroli, C., Brambilla, M., Latella, D., Dorigo, M., Birattari, M., Mayer, P., Velasco, J., Hoch, N., Bensler, H.P., Abeywickrama, D., Keznikl, J., Gerostathopoulos, I., Bures, T., Nicola, R.D., Loreti, M.: D7.2: Second Report on WP7 Ensemble Model Syntheses with Robot, Cloud Computing and e-Mobility, ASCENS Deliverable (2012)Google Scholar
  8. 8.
    Serbedzija, N., Reiter, S., Ahrens, M., Velasco, J., Pinciroli, C., Hoch, N., Werther, B.: D7.1: First Report on WP7 Requirement Specification and Scenario Description of the ASCENS Case Studies, ASCENS Deliverable (2011)Google Scholar
  9. 9.
    Serbedzija, N., Hoch, N., Pinciroli, C., Kit, M., Bures, T., Monreale, G., Montanari, U., Mayer, P., Velasco, J.: D7.3: Third Report on WP7 Integration and Simulation Report for the ASCENS Case Studies, ASCENS Deliverable (2013)Google Scholar
  10. 10.
    Neapolitan, R.: Learning Bayesian Networks. Prentice Hall (2003)Google Scholar
  11. 11.
    Vassev, E.: KnowLang Grammar in BNF. Technical Report Lero-TR-2012-04, Lero, University of Limerick, Ireland (2012)Google Scholar
  12. 12.
    Vassev, E., Hinchey, M.: Autonomy Requirements Engineering for Space Missions. NASA Monographs in Systems and Software Engineering. Springer (2014)Google Scholar
  13. 13.
    Ewens, W., Grant, G.: Stochastic processes (i): Poison processes and Markov chains. In: Statistical Methods in Bioinformatics, 2nd edn., Springer, New York (2005)CrossRefGoogle Scholar
  14. 14.
    Galindo, C., Fernandez-Madrigal, J., Gonzalez, J., Saffiotti, A.: Robot task planning using semantic maps. Robotics and Autonomous Systems 56(11), 955–966 (2008)CrossRefGoogle Scholar
  15. 15.
    Mozos, O., Jensfelt, P., Zender, H., Kruijff, G.J.M., Burgard, W.: An integrated system for conceptual spatial representations of indoor environments for mobile robots. In: Proceedings of the IROS 2007 Workshop: From Sensors to Human Spatial Concepts (FS2HSC), pp. 25–32 (2007)Google Scholar
  16. 16.
    Holzapfel, H., Neubig, D., Waibel, A.: A dialogue approach to learning object descriptions and semantic categories. Robotics and Autonomous Systems 56(11), 1004–1013 (2008)CrossRefGoogle Scholar
  17. 17.
    Kruijff, G.J.M., Lison, P., Benjamin, T., Jacobsson, H., Hawes, N.: Incremental, multi-level processing for comprehending situated dialogue in human-robot interaction. In: Proceedings of the Symposium on Language and Robots (2007)Google Scholar
  18. 18.
    Robinson, P., Bauer, S.: Introduction to Bio-Ontologies. CRC Press (2011)Google Scholar
  19. 19.
    Ocón, J., et al.: Autonomous controller - survey of the state of the art, ver. 1.3. Technical Report GOAC, GMV-GOAC-TN01, Contract No. 22361/09/NL/RA, October 31, ESTEC (2011)Google Scholar
  20. 20.
    Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Programming Multi-Agent Systems (ProMAS) Workshop Affiliated with AAMAS 2012, Valencia, Spain, pp. 55–68 (2012)Google Scholar
  21. 21.
    Soutchanski, M.: High-level robot programming and program execution. In: Proceedings of the ICAPS 2003 Workshop on Plan Execution. AAAI Press (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emil Vassev
    • 1
  • Mike Hinchey
    • 1
  1. 1.Lero–The Irish Software Engineering Research CentreUniversity of LimerickLimerickIreland

Personalised recommendations