Advertisement

Stochastic Model Checking of the Stochastic Quality Calculus

  • Flemming Nielson
  • Hanne Riis Nielson
  • Kebin Zeng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8950)

Abstract

The Quality Calculus uses quality binders for input to express strategies for continuing the computation even when the desired input has not been received. The Stochastic Quality Calculus adds generally distributed delays for output actions and real-time constraints on the quality binders for input. This gives rise to Generalised Semi-Markov Decision Processes for which few analytical techniques are available.

We restrict delays on output actions to be exponentially distributed while still admitting real-time constraints on the quality binders. This facilitates developing analytical techniques based on stochastic model checking and we compute closed form solutions for a number of interesting scenarios. The analyses are applied to the design of an intelligent smart electrical meter of the kind to be installed in European households by 2020.

Keywords

Model Check Global Schedule Local Schedule Programming Style Path Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Bravetti, M.: An integrated approach for the specification and analysis of stochastic real-time systems. Electr. Notes Theor. Comput. Sci. 68(5), 34–64 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bravetti, M.: Stochastic and real time in process algebra: A conceptual overview. Electr. Notes Theor. Comput. Sci. 162, 113–119 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: Concepts, discussions and relations of stochastic process algebras with general distributions. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Brinksma, E., Hermanns, H.: Process Algebra and Markov Chains, pp. 183–231. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Ciobanu, G., Koutny, M.: PerTiMo: A Model of Spatial Migration with Safe Access Permissions. Newcastle University, Computing Science (2011)Google Scholar
  7. 7.
    De Nicola, R., Katoen, J.-P., Latella, D., Massink, M.: Stoklaim: A stochastic extension of klaim. CNR-ISTI Technical Report number ISTI-2006-TR-01 (2006)Google Scholar
  8. 8.
    Hillston, J.: A compositional approach to performance modelling. Cambridge University Press, New York (1996)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Kwiatkowska, M., Norman, G., Parker, D.: Prism: Probabilistic model checking for performance and reliability analysis. ACM SIGMETRICS Performance Evaluation Review 36(4), 40–45 (2009)CrossRefGoogle Scholar
  11. 11.
    Milner, R.: A proposal for Standard ML. In: Proceedings of the 1984 ACM Symposium on LISP and Functional Programming, pp. 184–197. ACM (1984)Google Scholar
  12. 12.
    Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press (1999)Google Scholar
  13. 13.
    Nielsen, B.F., Nielson, F., Nielson, H.R.: Model checking multivariate state rewards. QEST 17, 7–16 (2010)Google Scholar
  14. 14.
    Nielson, H.R., Nielson, F.: Probabilistic analysis of the quality calculus. In: Beyer, D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892, pp. 258–272. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-35861-6_12CrossRefGoogle Scholar
  16. 16.
    Priami, C.: Stochastic π-calculus. The Computer Journal 38(7), 578–589 (1995)CrossRefGoogle Scholar
  17. 17.
    Vigo, R., Nielson, F., Nielson, H.R.: Broadcast, denial-of-service, and secure communication. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 412–427. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Wang, C., Groot, M.d.: Managing end-user preferences in the smart grid. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking, e-Energy 2010, pp. 105–114. ACM (2010)Google Scholar
  19. 19.
    Yi, W.: CCS+time = an interleaving model for real time systems. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds.) Automata, Languages and Programming. LNCS, vol. 510, pp. 217–228. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  20. 20.
    Zeng, K., Nielson, F., Nielson, H.R.: The Stochastic Quality Calculus. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 179–193. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Flemming Nielson
    • 1
  • Hanne Riis Nielson
    • 1
  • Kebin Zeng
    • 1
  1. 1.DTU ComputeTechnical University of DenmarkLyngbyDenmark

Personalised recommendations