Service Composition for Collective Adaptive Systems

  • Stephen Gilmore
  • Jane Hillston
  • Mirco Tribastone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8950)


Collective adaptive systems are large-scale resource-sharing systems which adapt to the demands of their users by redistributing resources to balance load or provide alternative services where the current provision is perceived to be insufficient. Smart transport systems are a primary example where real-time location tracking systems record the location availability of assets such as cycles for hire, or fleet vehicles such as buses, trains and trams. We consider the problem of an informed user optimising his journey using a composition of services offered by different service providers.


Journey Time Service Composition Cycle Station Average Journey Time Underground Train 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press (1996)Google Scholar
  2. 2.
    Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse Plug-in. Performance Evaluation Review 36(4), 28–33 (2009)CrossRefGoogle Scholar
  3. 3.
    Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic Process Algebras (chapter Stochastic Process Algebras). In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based distributed e-learning and course management system. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services for scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 204–221. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Cappello, I., Clark, A., Gilmore, S., Latella, D., Loreti, M., Quaglia, P., Schivo, S.: Quantitative analysis of services. In: Wirsing, Hölzl (eds.) [19], pp. 522–540Google Scholar
  7. 7.
    Wang, H., Laurenson, D., Hillston, J.: Evaluation of RSVP and Mobility-aware RSVP Using Performance Evaluation Process Algebra. In: Proceedings of the IEEE International Conference on Communications, Beijing, China (May 2008)Google Scholar
  8. 8.
    Argent-Katwala, A., Clark, A., Foster, H., Gilmore, S., Mayer, P., Tribastone, M.: Safety and response-time analysis of an automotive accident assistance service. In: Margaria, Steffen (eds.) [20], pp. 191–205.Google Scholar
  9. 9.
    Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models from UML activity diagrams annotated with the MARTE profile. In: Proceedings of the 7th International Workshop on Software and Performance (WOSP 2008), pp. 67–78. ACM Press, Princeton (2008)CrossRefGoogle Scholar
  10. 10.
    Tribastone, M., Gilmore, S.: Automatic translation of UML sequence diagrams into PEPA models. In: 5th International Conference on the Quantitative Evaluation of SysTems (QEST 2008), pp. 205–214. IEEE Computer Society Press, St Malo (2008)CrossRefGoogle Scholar
  11. 11.
    Wirsing, M., Hölzl, M., Acciai, L., Banti, F., Clark, A., Fantechi, A., Gilmore, S., Gnesi, S., Gönczy, L., Koch, N., Lapadula, A., Mayer, P., Mazzanti, F., Pugliese, R., Schroeder, A., Tiezzi, F., Tribastone, M., Varró, D.: Sensoria patterns: Augmenting service engineering with formal analysis, transformation and dynamicity. In: Margaria, Steffen (eds.) [20], pp. 170–190Google Scholar
  12. 12.
    Knapp, A., Janisch, S., Hennicker, R., Clark, A., Gilmore, S., Hacklinger, F., Baumeister, H., Wirsing, M.: Modelling the coCoME with the java/A component model. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example. LNCS, vol. 5153, pp. 207–237. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Geisweiller, N., Hillston, J., Stenico, M.: Relating continuous and discrete PEPA models of signalling pathways. Theor. Comput. Sci. 404(1-2), 97–111 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M., Varró, D.: Non-functional properties in the model-driven development of service-oriented systems. Software and System Modeling 10(3), 287–311 (2011)CrossRefGoogle Scholar
  15. 15.
    Clark, A., Duguid, A., Gilmore, S.: Passage-end analysis for analysing robot movement. In: Wirsing, Hölzl (eds.) [19], pp. 506–521Google Scholar
  16. 16.
    Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Second International Conference on the Quantitative Evaluation of Systems, Torino, Italy, pp. 33–43. IEEE Computer Society Press (September 2005)Google Scholar
  17. 17.
    Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Trans. Software Eng. 38(1), 205–219 (2012)CrossRefGoogle Scholar
  18. 18.
    Tribastone, M., Ding, J., Gilmore, S., Hillston, J.: Fluid rewards for a stochastic process algebra. IEEE Trans. Software Eng. 38(4), 861–874 (2012)CrossRefGoogle Scholar
  19. 19.
    Margaria, T., Steffen, B.: ISoLA 2008. CCIS, vol. 17. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Wirsing, M., Hölzl, M. (eds.): SENSORIA. LNCS, vol. 6582. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stephen Gilmore
    • 1
  • Jane Hillston
    • 1
  • Mirco Tribastone
    • 2
  1. 1.Laboratory for Foundations of Computer ScienceUniversity of EdinburghEdinburghUK
  2. 2.Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations