Soft Agents: Exploring Soft Constraints to Model Robust Adaptive Distributed Cyber-Physical Agent Systems

  • Carolyn Talcott
  • Farhad Arbab
  • Maneesh Yadav
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8950)


We are interested in principles for designing and building open distributed systems consisting of multiple cyber-physical agents, specifically, where a coherent global view is unattainable and timely consensus is impossible. Such agents attempt to contribute to a system goal by making local decisions to sense and effect their environment based on local information. In this paper we propose a model, formalized in the Maude rewriting logic system, that allows experimenting with and reasoning about designs of such systems. Features of the model include communication via sharing of partially ordered knowledge, making explicit the physical state as well as the cyber perception of this state, and the use of a notion of soft constraints developed by Martin Wirsing and his team to specify agent behavior. The paper begins with a discussion of desiderata for such models and concludes with a small case study to illustrate the use of the modeling framework.


Soft Agent Constraint Satisfaction Problem Soft Constraint Knowledge Item Agent Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wirsing, M., Denker, G., Talcott, C., Poggio, A., Briesemeister, L.: A rewriting logic framework for soft constraints. In: Sixth International Workshop on Rewriting Logic and Its Applications (WRLA 2006). Electronic Notes in Theoretical Computer Science. Elsevier (2006)Google Scholar
  2. 2.
    Hölzl, M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? In: Seventh International Workshop on Rewriting Logic and Its Applications (WRLA 2008). Electronic Notes in Theoretical Computer Science, Elsevier (2008)Google Scholar
  3. 3.
    Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexicographic orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part I. LNCS, vol. 8265, pp. 68–79. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Interlink project (last accessed November 15, 2014)Google Scholar
  5. 5.
    Bristeau, P.J., Callou, F., Vissiére, D., Petit, N., et al.: The navigation and control technology inside the ar. drone micro uav. In: 18th IFAC world congress, vol. 18, pp. 1477–1484 (2011)Google Scholar
  6. 6.
    Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: AR-Drone as a Platform for Robotic Research and Education. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161, pp. 172–186. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Meng, L., Li, L., Veres, S.: Aerodynamic parameter estimation of an unmanned aerial vehicle based on extended kalman filter and its higher order approach. In: 2010 2nd International Conference on Advanced Computer Control (ICACC), vol. 5, pp. 526–531. IEEE (2010)Google Scholar
  8. 8.
    Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint satisfaction problem: Formalization and algorithms. IEEE Transactions on Formalization and algorithms. Knowledge and Data Engineering 10(5), 673–685 (1998)CrossRefGoogle Scholar
  9. 9.
    Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence 161(1), 149–180 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    des Jardins, M.E., Durfee, E.H., Charles, L., Ortiz, J., Wolverton, M.J.: A survey of research in distributed, continual planning. AI Magazine 20(4), 13 (1999)Google Scholar
  11. 11.
    de Weerdt, M., Clement, B.: Introduction to planning in multiagent systems. Multiagent Grid Syst. 5(4), 345–355 (2009)CrossRefGoogle Scholar
  12. 12.
    Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press (2009), Electronically available at
  13. 13.
    Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 266–271. Morgan Kaufmann Publishers Inc, San Francisco (2005)Google Scholar
  14. 14.
    Stehr, M.-O., Talcott, C., Rushby, J., Lincoln, P., Kim, M., Cheung, S., Poggio, A.: Fractionated software for networked cyber-physical systems: Research directions and long-term vision. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 110–143. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Stehr, M.-O., Kim, M., Talcott, C.: Partially ordered knowledge sharing and fractionated systems in the context of other models for distributed computing. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 402–433. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Brown, O., Eremenko, P.: The value proposition for fractionated space architectures. In: Proc. of AIAA, San Jose, CA (September 2006)Google Scholar
  17. 17.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  18. 18.
    Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems: State of the art and research challenges. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Soft-Ware Intensive Systems. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Ascens: Autonomic service-component ensembles (last accessed: November 15, 2014)Google Scholar
  20. 20.
    Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Arbab, F., Santini, F.: Preference and similarity-based behavioral discovery of services. In: Formal Methods (2012)Google Scholar
  22. 22.
    Kim, M., Stehr, M.O., Talcott, C.: A distributed logic for networked cyber-physical systems. Science of Computer Programming (2012)Google Scholar
  23. 23.
    Choi, J.S., McCarthy, T., Yadav, M., Kim, M., Talcott, C., Gressier-Soudan, E.: Application patterns for cyber-physical systems. In: Cyber-physical Systems Networks and Applications (2013)Google Scholar
  24. 24.
    Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time maude. Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)CrossRefzbMATHGoogle Scholar
  25. 25.
    Nielson, H.R., Nielson, F., Vigo, R.: A calculus for quality. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS, vol. 7684, pp. 188–204. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Nielson, H.R., Nielson, F.: Safety versus security in the quality calculus. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 285–303. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Stehr, M.O., Talcott, C.: Planning and learning algorithms for routing in disruption-tolerant networks. In: MILCOM 2008. IEEE (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carolyn Talcott
    • 1
  • Farhad Arbab
    • 2
  • Maneesh Yadav
    • 1
  1. 1.SRI InternationalMenlo ParkUSA
  2. 2.CWI AmsterdamThe Netherlands

Personalised recommendations