Advertisement

Institutions for OCL-Like Expression Languages

  • Alexander Knapp
  • María Victoria Cengarle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8950)

Abstract

In 2008, Martin Wirsing initiated the project of conceiving the “Unified Modeling Language” (UML) as a heterogeneous modelling language. He proposed to use the theory of heterogeneous institutions for providing individual semantics to each sub-language, that can then be integrated using institution (co-)morphisms. In particular, the proposal allows for seamlessly capturing the notorious semantic variation points of UML with mathematical rigour. In this line of research, we contribute an institutional framework for the “Object Constraint Language” (OCL), UML’s language for expressing constraints.

Keywords

Natural Transformation Object Constraint Language Term Language Object Constraint Language Expression Construction Functor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Addison-Wesley (1999)Google Scholar
  2. 2.
    Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What Is a Multi-modeling Language? In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 71–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Cengarle, M.V., Knapp, A.: OCL 1.4/1.5 vs. OCL 2.0 Expressions: Formal Semantics and Expressiveness. Softw. Syst. Model. 3(1), 9–30 (2004)CrossRefGoogle Scholar
  4. 4.
    Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach to UML Semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Clark, T.: Typechecking UML Static Models. In: France, R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 503–517. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Ganzinger, H.: Programs as Transformations of Algebraic Theories (Extended Abstract). Informatik Fachberichte 50, 22–41 (1981)zbMATHGoogle Scholar
  7. 7.
    Goguen, J.A., Burstall, R.M.: A Study in the Foundation of Programming Methodology: Specifications, Institutions, Charters, and Parchments. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 313–333. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  8. 8.
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and Programming. J. ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Goguen, J.A., Meseguer, J.: Order-sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations. Theo. Comp. Sci. 105(2), 217–273 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hennicker, R., Knapp, A., Baumeister, H.: Semantics of OCL Operation Specifications. In: Schmitt, P.H. (ed.) Proc. Wsh. OCL 2.0 — Industry Standard or Scientific Playground? (WOCL 2003). Electr. Notes Theo. Comp. Sci., vol. 120, pp. 111–132. Elsevier (2004)Google Scholar
  11. 11.
    Knapp, A., Cengarle, M.V.: Institutions for OCL-like Expression Languages. Manuscript, Universitt Augsburg (2014), http://www.informatik.uni-augsburg.de/lehrstuehle/swt/sse/veroeffentlichungen/uau-2014/ocl-institutions.pdf
  12. 12.
    Lano, K.: Null Considered Harmful (for Transformation Verification). In: Proc. 3rd Int. Wsh. Verification of Model Transformations, VOLT 2014 (2014), http://volt2014.big.tuwien.ac.at/papers/volt2014_paper_3.pdf
  13. 13.
    Meseguer, J.: General Logics. In: Ebbinghaus, H.D., Fernández-Prida, J., Garrido, M., Lascar, D., Rodríguez Artalejo, M. (eds.) Proc. Logic Colloquium 1987, pp. 275–329. North-Holland (1989)Google Scholar
  14. 14.
    Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Object Management Group: Unified Modeling Language, Superstructure. Version 2.4.1. Specification formal/2011-08-06, OMG (2011)Google Scholar
  16. 16.
    Object Management Group: Object Constraint Language. Version 2.3.1. Specification formal/2012-01-01, OMG (2012)Google Scholar
  17. 17.
    Pawłowski, W.: Context Parchments. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 381–401. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Petre, M.: UML in Practice. In: Proc. 35th Int. Conf. Software Engineering (ICSE 2013), pp. 722–731. IEEE (2013)Google Scholar
  19. 19.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. EATCS Monographs in Theoretical Computer Science. Springer (2012)Google Scholar
  20. 20.
    Tarlecki, A., Burstall, R.M., Goguen, J.A.: Some Fundamental Algebraic Tools for the Semantics of Computation, Part 3: Indexed Categories. Theo. Comp. Sci. 91, 239–264 (1991)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wirsing, M.: Algebraic Specification. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 675–788. Elsevier and MIT Press (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexander Knapp
    • 1
  • María Victoria Cengarle
    • 2
  1. 1.Universität AugsburgGermany
  2. 2.Technische Universität MünchenGermany

Personalised recommendations