Partial Valuation Structures for Qualitative Soft Constraints

  • Alexander Schiendorfer
  • Alexander Knapp
  • Jan-Philipp Steghöfer
  • Gerrit Anders
  • Florian Siefert
  • Wolfgang Reif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8950)


Soft constraints have proved to be a versatile tool for the specification and implementation of decision making in adaptive systems. A plethora of formalisms have been devised to capture different notions of preference. Wirsing et al. have proposed partial valuation structures as a unifying algebraic structure for several soft constraint formalisms, including quantitative and qualitative ones, which, in particular, supports lexicographic products in a broad range of cases. We demonstrate the versatility of partial valuation structures by integrating the qualitative formalism of constraint relationships as well as the hybrid concept of constraint hierarchies. The latter inherently relies on lexicographic combinations, but it turns out that not all can be covered directly by partial valuation structures. We therefore investigate a notion for simulating partial valuation structures not amenable to lexicographic combinations by better suited ones. The concepts are illustrated by a case study in decentralized energy management.


Steam Propa Assure Biogas Incineration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amadio, R.M., Curien, P.L.: Domains and Lambda-Calculi. Cambridge Tracts in Theoretical Computer Science, vol. 46. Cambridge University Press (1998)Google Scholar
  2. 2.
    Anders, G., Schiendorfer, A., Steghöfer, J.P., Reif, W.: Robust Scheduling in a Self-Organizing Hierarchy of Autonomous Virtual Power Plants. In: Stechele, W., Wild, T. (eds.) Proc. 2nd Int. Wsh. Self-optimisation in Organic and Autonomic Computing Systems (SAOS 2014), pp. 1–8 (2014)Google Scholar
  3. 3.
    Bistarelli, S., Codognet, P., Rossi, F.: Abstracting Soft Constraints: Framework, Properties, Examples. Artif. Intell. 139, 175–211 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bistarelli, S., Frühwirth, T., Marte, M., Rossi, F.: Soft Constraint Propagation and Solving in Constraint Handling Rules. Computational Intelligence 20(2), 287–307 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Satisfaction and Optimization. J. ACM 44(2), 201–236 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison. Constraints 4(3), 199–240 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bohnenblust, H.F.: An Axiomatic Characterization of Lp-spaces. Duke Math. J. 6, 627–640 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Borning, A., Freeman-Benson, B., Wilson, M.: Constraint Hierarchies. LISP Symb. Comp. 5, 223–270 (1992)CrossRefzbMATHGoogle Scholar
  9. 9.
    Cooper, M., Schiex, T.: Arc Consistency for Soft Constraints. Artificial Intelligence 154(1), 199–227 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Delgado, A., Olarte, C.A., Pérez, J.A., Rueda, C.: Implementing Semiring-Based Constraints Using Mozart. In: Van Roy, P. (ed.) MOZ 2004. LNCS, vol. 3389, pp. 224–236. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Eberhardinger, B., Seebach, H., Knapp, A., Reif, W.: Towards Testing Self-organizing, Adaptive Systems. In: Merayo, M.G., de Oca, E.M. (eds.) ICTSS 2014. LNCS, vol. 8763, pp. 180–185. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Gadducci, F., Hölzl, M., Monreale, G.V., Wirsing, M.: Soft constraints for lexicographic orders. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part I. LNCS, vol. 8265, pp. 68–79. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Hölzl, M., Meier, M., Wirsing, M.: Which Soft Constraints do you Prefer? In: Proc. 7th Int. Wsh. Rewriting Logic and its Applications (WRLA 2008). Electronic Notes in Theoretical Computer Science, vol. 238(3), pp. 189–205 (2009)Google Scholar
  14. 14.
    Hölzl, M., Wirsing, M.: Towards a System Model for Ensembles. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Hosobe, H.: Constraint Hierarchies as Semiring-Based CSPs. In: Proc. 21st Int. Conf. Tools with Artificial Intelligence (ICTAI 2009), pp. 176–183 (2009)Google Scholar
  16. 16.
    Knapp, A., Schiendorfer, A.: Embedding Constraint Relationships into C-Semirings. Tech. Rep. 2014-03, Institute for Software and Systems Engineering, University of Augsburg (2014),
  17. 17.
    Knapp, A., Schiendorfer, A., Reif, W.: Quality over Quantity in Soft Constraints. In: Proc. 26th Int. Conf. Tools with Artificial Intelligence (ICTAI 2014), pp. 453–460 (2014)Google Scholar
  18. 18.
    Leenen, L., Anbulagan, A., Meyer, T., Ghose, A.K.: Modeling and Solving Semiring Constraint Satisfaction Problems by Transformation to Weighted Semiring Max-SAT. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 202–212. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Meseguer, P., Rossi, F., Schiex, T.: Soft Constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 9 (2006)Google Scholar
  20. 20.
    Nafz, F., Seebach, H., Steghöfer, J.P., Anders, G., Reif, W.: Constraining Self-organisation Through Corridors of Correct Behaviour: The Restore Invariant Approach. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing – A Paradigm Shift for Complex Systems. Autonomic Systems, vol. 1, pp. 79–93. Springer (2011)Google Scholar
  21. 21.
    Schiendorfer, A., Steghöfer, J.P., Knapp, A., Nafz, F., Reif, W.: Constraint Relationships for Soft Constraints. In: Bramer, M., Petridis, M. (eds.) Proc. 33rd SGAI Int. Conf. Innovative Techniques and Applications of Artificial Intelligence (AI 2013), pp. 241–255. Springer (2013)Google Scholar
  22. 22.
    Schiendorfer, A., Steghöfer, J.P., Reif, W.: Synthesis and Abstraction of Constraint Models for Hierarchical Resource Allocation Problems. In: Proc. 6th Int. Conf. Agents and Artificial Intelligence (ICAART 2014), vol. 2, pp. 15–27. SciTePress (2014)Google Scholar
  23. 23.
    Schiendorfer, A., Steghöfer, J.P., Reif, W.: Synthesised Constraint Models for Distributed Energy Management. In: Proc. 3rd Int. Wsh. Smart Energy Networks & Multi-Agent Systems (SEN-MAS 2014), pp. 1529–1538 (2014)Google Scholar
  24. 24.
    Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems: Hard and Easy Problems. In: Proc. 14th Int. Joint Conf. Artificial Intelligence (IJCAI 1995), vol. 1, pp. 631–639. Morgan Kaufmann (1995)Google Scholar
  25. 25.
    Smith, B.M.: Modelling. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 11. Elsevier (2006)Google Scholar
  26. 26.
    Steghöfer, J.-P., et al.: Trustworthy Organic Computing Systems: Challenges and Perspectives. In: Xie, B., Branke, J., Sadjadi, S.M., Zhang, D., Zhou, X. (eds.) ATC 2010. LNCS, vol. 6407, pp. 62–76. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Steghöfer, J.P., Anders, G., Siefert, F., Reif, W.: A System of Systems Approach to the Evolutionary Transformation of Power Management Systems. In: Wsh. Proc. 43th Nat. Conf. GI Jahrestagung (INFORMATIK 2013). Lect. Notes Inf., vol. P-220, Bonner Köllen Verlag (2013)Google Scholar
  28. 28.
    Tsang, E.P.K.: Foundations of Constraint Satisfaction. Computation in Cognitive Science 289. Academic Press (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexander Schiendorfer
    • 1
  • Alexander Knapp
    • 1
  • Jan-Philipp Steghöfer
    • 1
  • Gerrit Anders
    • 1
  • Florian Siefert
    • 1
  • Wolfgang Reif
    • 1
  1. 1.Institute for Software and Systems EngineeringUniversity of AugsburgGermany

Personalised recommendations