Skip to main content

Oxidative Stress and Hepatocellular Injury

  • Chapter
Studies on Hepatic Disorders

Abstract

Oxidative stress and inflammation are hallmarks of virtually all (chronic) liver diseases. Not surprisingly, understanding the role of oxidative stress and its deleterious consequences has been and still is an important research topic in hepatology. A thorough understanding of oxidative stress and its impact on liver homeostasis is essential to identify novel targets for the treatment of liver diseases. In this chapter, we will review the current knowledge on the role of oxidative stress in hepatocellular injury. Hepatocytes have received a large share of the attention in research on oxidative stress. That will also be the case in this chapter. Nevertheless, we will also address the role of other liver cell types, such as endothelial cells, hepatic stellate cells, and Kupffer cells in oxidative stress-mediated liver injury.

*Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon, Oxford, p 543

    Google Scholar 

  2. Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  4. Rahman I, MacNee W (2000) Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J 16:534–554

    Article  CAS  PubMed  Google Scholar 

  5. Baeuerle PA, Baltimore D (1996) NF-kappa B: ten years after. Cell 87:13–20

    Article  CAS  PubMed  Google Scholar 

  6. Keum YS, Owuor ED, Kim BR, Hu R, Kong AN (2003) Involvement of Nrf2 and JNK1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent phenethyl isothiocyanate (PEITC). Pharm Res 20:1351–1356

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394

    Article  CAS  PubMed  Google Scholar 

  8. Brunt EM, Tiniakos DG (2010) Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol 16:5286–5296

    Article  PubMed Central  PubMed  Google Scholar 

  9. Brunt EM (2010) Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 7:195–203

    Article  PubMed  Google Scholar 

  10. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–1846

    Article  CAS  PubMed  Google Scholar 

  11. Tilg H (2010) The role of cytokines in non-alcoholic fatty liver disease. Dig Dis 28:179–185

    Article  PubMed  Google Scholar 

  12. Dowman JK, Tomlinson JW, Newsome PN (2010) Pathogenesis of non-alcoholic fatty liver disease. QJM 103:71–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kim WR, Ludwig J, Lindor KD (2000) Variant forms of cholestatic diseases involving small bile ducts in adults. Am J Gastroenterol 95:1130–1138

    Article  CAS  PubMed  Google Scholar 

  14. Qureshi WA (1999) Intrahepatic cholestatic syndromes: pathogenesis, clinical features and management. Dig Dis 17:49–59

    Article  CAS  PubMed  Google Scholar 

  15. Poupon R, Chazouilleres O, Poupon RE (2000) Chronic cholestatic diseases. J Hepatol 32:129–140

    Article  CAS  PubMed  Google Scholar 

  16. Sokol RJ, Devereaux M, Khandwala RA (1991) Effect of dietary lipid and vitamin E on mitochondrial lipid peroxidation and hepatic injury in the bile duct-ligated rat. J Lipid Res 32:1349–1357

    CAS  PubMed  Google Scholar 

  17. Parola M, Leonarduzzi G, Robino G, Albano E, Poli G et al (1996) On the role of lipid peroxidation in the pathogenesis of liver damage induced by long-standing cholestasis. Free Radic Biol Med 20:351–359

    Article  CAS  PubMed  Google Scholar 

  18. Copple BL, Jaeschke H, Klaassen CD (2010) Oxidative stress and the pathogenesis of cholestasis. Semin Liver Dis 30:195–204

    Article  CAS  PubMed  Google Scholar 

  19. Jaeschke H, Bajt ML (2006) Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89:31–41

    Article  CAS  PubMed  Google Scholar 

  20. Nelson SD (1990) Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin Liver Dis 10:267–278

    Article  CAS  PubMed  Google Scholar 

  21. Tsujimoto Y, Nakagawa T, Shimizu S (2006) Mitochondrial membrane permeability transition and cell death. Biochim Biophys Acta 1757:1297–1300

    Article  CAS  PubMed  Google Scholar 

  22. Ikesugi K, Mulhern ML, Madson CJ, Hosoya K, Terasaki T et al (2006) Induction of endoplasmic reticulum stress in retinal pericytes by glucose deprivation. Curr Eye Res 31:947–953

    Article  CAS  PubMed  Google Scholar 

  23. Badiola N, Penas C, Minano-Molina A, Barneda-Zahonero B, Fado R et al (2011) Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12. Cell Death Dis 2:e149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 3(6):pii: a004317. doi:10.1101/cshperspect.a004317

    Article  Google Scholar 

  25. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  CAS  PubMed  Google Scholar 

  26. Benali-Furet NL, Chami M, Houel L, De Giorgi F, Vernejoul F et al (2005) Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 24:4921–4933

    Article  CAS  PubMed  Google Scholar 

  27. Higa A, Chevet E (2012) Redox signaling loops in the unfolded protein response. Cell Signal 24:1548–1555

    Article  CAS  PubMed  Google Scholar 

  28. Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M et al (2004) NAD(P)H oxidase nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 24:10703–10717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM et al (2000) Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 470:35–39

    Article  CAS  PubMed  Google Scholar 

  30. Kagedal K, Zhao M, Svensson I, Brunk UT (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 359:335–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Terman A, Gustafsson B, Brunk UT (2006) The lysosomal-mitochondrial axis theory of postmitotic aging and cell death. Chem Biol Interact 163:29–37

    Article  CAS  PubMed  Google Scholar 

  32. Terman A, Kurz T, Gustafsson B, Brunk UT (2006) Lysosomal labilization. IUBMB Life 58:531–539

    Article  CAS  PubMed  Google Scholar 

  33. Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43:S31–S44

    Article  CAS  PubMed  Google Scholar 

  34. Schoemaker M, Moshage H (2004) Defying death: the hepatocyte’s survival kit. Clin Sci (Lond) 107:13–25

    Article  CAS  Google Scholar 

  35. Mahmood Z, Shukla Y (2010) Death receptors: targets for cancer therapy. Exp Cell Res 316:887–899

    Article  CAS  PubMed  Google Scholar 

  36. Li M, Beg AA (2000) Induction of necrotic-like cell death by tumor necrosis factor alpha and caspase inhibitors: novel mechanism for killing virus-infected cells. J Virol 74:7470–7477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Giampietri C, Starace D, Petrungaro S, Filippini A, Ziparo E (2014) Necroptosis: molecular signalling and translational implications. Int J Cell Biol 2014:490275

    PubMed Central  PubMed  Google Scholar 

  38. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  CAS  PubMed  Google Scholar 

  39. Ryter SW, Choi AM (2013) Autophagy: an integral component of the mammalian stress response. J Biochem Pharmacol Res 1:176–188

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Conde de la Rosa L, Schoemaker M, Vrenken T, Buist-Homan M, Havinga R et al (2006) Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol 44:918–929

    Article  CAS  PubMed  Google Scholar 

  41. Conde de la Rosa L, Vrenken T, Hannivoort R, Buist-Homan M, Havinga R et al (2008) Carbon monoxide blocks oxidative stress-induced hepatocyte apoptosis via inhibition of the p54 JNK isoform. Free Radic Biol Med 44:1323–1333

    Article  CAS  PubMed  Google Scholar 

  42. Kaizu T, Ikeda A, Nakao A, Tsung A, Toyokawa H et al (2008) Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. Am J Physiol Gastrointest Liver Physiol 294:G236–G244

    Article  CAS  PubMed  Google Scholar 

  43. Amersi F, Shen XD, Anselmo D, Melinek J, Iyer S et al (2002) Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology 35:815–823

    Article  CAS  PubMed  Google Scholar 

  44. Brugger J, Schick MA, Brock RW, Baumann A, Muellenbach RM et al (2010) Carbon monoxide has antioxidative properties in the liver involving p38 MAP kinase pathway in a murine model of systemic inflammation. Microcirculation 17:504–513

    CAS  PubMed  Google Scholar 

  45. Chatterjee S, Ganini D, Tokar EJ, Kumar A, Das S et al (2013) Leptin is key to peroxynitrite-mediated oxidative stress and kupffer cell activation in experimental non-alcoholic steatohepatitis. J Hepatol 58:778–784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J et al (2012) P2X7 receptor-NADPH oxidase axis mediates protein radical formation and kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic Biol Med 52:1666–1679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Seternes T, Sorensen K, Smedsrod B (2002) Scavenger endothelial cells of vertebrates: a nonperipheral leukocyte system for high-capacity elimination of waste macromolecules. Proc Natl Acad Sci U S A 99:7594–7597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Karaa A, Kamoun WS, Clemens MG (2005) Oxidative stress disrupts nitric oxide synthase activation in liver endothelial cells. Free Radic Biol Med 39:1320–1331

    Article  CAS  PubMed  Google Scholar 

  49. Karaa A, Kamoun WS, Xu H, Zhang J, Clemens MG (2006) Differential effects of oxidative stress on hepatic endothelial and kupffer cell eicosanoid release in response to endothelin-1. Microcirculation 13:457–466

    Article  CAS  PubMed  Google Scholar 

  50. Rauen U, Li T, de Groot H (2007) Inhibitory and enhancing effects of NO on H(2)O(2) toxicity: dependence on the concentrations of NO and H(2)O(2). Free Radic Res 41:402–412

    Article  CAS  PubMed  Google Scholar 

  51. McMahon AC, Parry SN, Benson VL, Witting PK, Le Couteur DG (2013) Beneficial effects of the synthetic antioxidant tert-butyl bisphenol on the hepatic microcirculation in a rat model of diabetes mellitus. Acta Diabetol 50:645–649

    Article  CAS  PubMed  Google Scholar 

  52. Nieto N, Friedman SL, Cederbaum AI (2002) Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P450 2E1-derived reactive oxygen species. Hepatology 35:62–73

    Article  CAS  PubMed  Google Scholar 

  53. Nieto N, Friedman SL, Cederbaum AI (2002) Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J Biol Chem 277:9853–9864

    Article  CAS  PubMed  Google Scholar 

  54. Dunning S, Hannivoort R, de Boer J, Buist-Homan M, Faber K et al (2009) Superoxide anions and hydrogen peroxide inhibit proliferation of activated rat stellate cells and induce different modes of cell death. Liver Int 29:922–932

    Article  CAS  PubMed  Google Scholar 

  55. Dunning S, Ur Rehman A, Tiebosch MH, Hannivoort RA, Haijer FW et al (2013) Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death. Biochim Biophys Acta 1832:2027–2034

    Article  CAS  PubMed  Google Scholar 

  56. Moshage H, Casini A, Lieber CS (1990) Acetaldehyde selectively stimulates collagen production in cultured rat liver fat-storing cells but not in hepatocytes. Hepatology 12:511–518

    Article  CAS  PubMed  Google Scholar 

  57. Svegliati-Baroni G, Ridolfi F, Di Sario A, Saccomanno S, Bendia E et al (2001) Intracellular signaling pathways involved in acetaldehyde-induced collagen and fibronectin gene expression in human hepatic stellate cells. Hepatology 33:1130–1140

    Article  CAS  PubMed  Google Scholar 

  58. Svegliati-Baroni G, Inagaki Y, Rincon-Sanchez AR, Else C, Saccomanno S et al (2005) Early response of alpha2(I) collagen to acetaldehyde in human hepatic stellate cells is TGF-beta independent. Hepatology 42:343–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Arellanes-Robledo J, Reyes-Gordillo K, Shah R, Dominguez-Rosales JA, Hernandez-Nazara ZH et al (2013) Fibrogenic actions of acetaldehyde are beta-catenin dependent but wingless independent: a critical role of nucleoredoxin and reactive oxygen species in human hepatic stellate cells. Free Radic Biol Med 65:1487–1496

    Article  CAS  PubMed  Google Scholar 

  60. Cui W, Matsuno K, Iwata K, Ibi M, Matsumoto M et al (2011) NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology 54:949–958

    Article  CAS  PubMed  Google Scholar 

  61. Adachi T, Togashi H, Suzuki A, Kasai S, Ito J et al (2005) NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology 41:1272–1281

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Moshage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tiebosch, M.H., Karimian, G., Moshage, H. (2015). Oxidative Stress and Hepatocellular Injury. In: Albano, E., Parola, M. (eds) Studies on Hepatic Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-15539-5_4

Download citation

Publish with us

Policies and ethics