The Chemistry of Graphene Oxide



In this chapter, we discuss a variety of chemical reactions introduced for GO. Among all studies on the chemistry of GO, the largest portion focused on the reduction of GO back to graphene, mainly due to its high relevance to graphene and the gold rush of graphene research over the last decade. However, doping, functionalization and cross-linking of GO are equally, if not more, interesting to chemists, since GO is a giant model compound of polycyclic aromatic hydrocarbon (PAH) oxides. Here, we start with a thorough comparison between various reducing recipes for GO, and follow with some theoretical simulations and predictions on its convertibility toward graphene. In addition to that, we elaborate on extended chemical modifications (covalent and non-covalent), cross-linking, and doping recipes for this macromolecule shown in literature. After all, we intend to show you that GO became a relatively hot research topic, not only due to its relevance to graphene, but also for its high chemical activity and tunability, which enabled the prosperity of its research in various fields led by chemists, materials scientists, biologists, physicists, as well as engineers. It is a perfect paradigm for young researchers as an important subject thrived in interdisciplinary research. After all, when real-life problems come, potential solutions do not impose boundaries between disciplines. All relevant disciplines can offer their input, and contribute together to the final solutions, in which cases communications and collaborations between different researchers need to be encouraged and appreciated.


Graphene oxide Reduction Functionalization Covalent Non-covalent Doping Cross-linking Toxicity Hygroscopicity 



W. G. sincerely thank for the start-up funding support from the Department of Textile Engineering, Chemistry and Science at North Carolina State University, Raleigh, NC.


  1. 1.
    Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470Google Scholar
  2. 2.
    Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503Google Scholar
  3. 3.
    Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158Google Scholar
  4. 4.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682Google Scholar
  5. 5.
    Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132:8180–8186Google Scholar
  6. 6.
    Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564Google Scholar
  7. 7.
    Cote LJ, Kim J, Tung VC, Luo JY, Kim F, Huang JX (2011) Graphene oxide as surfactant sheets. Pure Appl Chem 83:95–110Google Scholar
  8. 8.
    Cote LJ, Kim F, Huang J (2008) Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049Google Scholar
  9. 9.
    Cote LJ, Kim J, Zhang Z, Sun C, Huang J (2010) Tunable assembly of graphene oxide surfactant sheets: wrinkles, overlaps and impacts on thin film properties. Soft Matter 6Google Scholar
  10. 10.
    Kim F, Cote LJ, Huang J (2009) Graphene oxide: surface activity and two-dimensional assembly. Adv Mater 22:1954–1958Google Scholar
  11. 11.
    Hofmann U, Frenzel A (1934) The reduction of graphite oxide with hydrogen sulphide. Koll Zeitschr 68:149–151Google Scholar
  12. 12.
    Kim J, Im H, Kim J-M, Kim J (2012) Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites. J Mater Sci 47:1418–1426Google Scholar
  13. 13.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565Google Scholar
  14. 14.
    Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH (2013) Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5:52–71Google Scholar
  15. 15.
    Luo D, Zhang G, Liu J, Sun X (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115:11327–11335Google Scholar
  16. 16.
    Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228Google Scholar
  17. 17.
    Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408Google Scholar
  18. 18.
    Park S, An JH, Piner RD, Jung I, Yang DX, Velamakanni A, Nguyen ST, Ruoff RS (2008) Aqueous suspension and characterization of chemically modified graphene sheets. Chem Mater 20:6592–6594Google Scholar
  19. 19.
    Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992Google Scholar
  20. 20.
    Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite-and graphene oxide. Carbon 49:3019–3023Google Scholar
  21. 21.
    Obata S, Tanaka H, Saiki K (2013) Electrical and spectroscopic investigations on the reduction mechanism of graphene oxide. Carbon 55:126–132Google Scholar
  22. 22.
    Niu Z, Chen J, Hng HH, Ma J, Chen X (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24:4144–4150Google Scholar
  23. 23.
    Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29Google Scholar
  24. 24.
    Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398Google Scholar
  25. 25.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286Google Scholar
  26. 26.
    Yun JM, Yeo JS, Kim J, Jeong HG, Kim DY, Noh YJ, Kim SS, Ku BC, Na SI (2011) Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells. Adv Mater 23:4923–4928Google Scholar
  27. 27.
    Liu J, Jeong H, Liu J, Lee K, Park JY, Ahn YH, Lee S (2010) Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents. Carbon 48:2282–2289Google Scholar
  28. 28.
    Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73Google Scholar
  29. 29.
    Cataldo F, Ursini O, Angelini G (2011) Graphite oxide and graphene nanoribbons reduction with hydrogen iodide. Fuller Nanotub Car N 19:461–468Google Scholar
  30. 30.
    Das AK, Srivastav M, Layek RK, Uddin ME, Jung D, Kim NH, Lee JH (2014) Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst. J Mater Chem A 2:1332–1340Google Scholar
  31. 31.
    Esfandiar A, Akhavan O, Irajizad A (2011) Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J Mater Chem 21:10907–10914Google Scholar
  32. 32.
    Liao KH, Mittal A, Bose S, Leighton C, Mkhoyan KA, Macosko CW (2011) Aqueous only route toward graphene from graphite oxide. ACS Nano 5:1253–1258Google Scholar
  33. 33.
    Han TH, Huang Y-K, Tan ATL, Dravid VP, Huang J (2011) Steam etched porous graphene oxide network for chemical sensing. J Am Chem Soc 133:15264–15267Google Scholar
  34. 34.
    Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339Google Scholar
  35. 35.
    Long Y, Zhang CC, Wang XX, Gao JP, Wang W, Liu Y (2011) Oxidation of SO(2) to SO(3) catalyzed by graphene oxide foams. J Mater Chem 21:13934–13941Google Scholar
  36. 36.
    Moon IK, Lee J, Lee H (2011) Highly qualified reduced graphene oxides: the best chemical reduction. Chem Commun 47:9681–9683Google Scholar
  37. 37.
    Jung H, Yang SJ, Kim T, Kang JH, Park CR (2013) Ultrafast room-temperature reduction of graphene oxide to graphene with excellent dispersibility by lithium naphthalenide. Carbon 63:165–174Google Scholar
  38. 38.
    Zhang S, Shao Y, Liao H, Engelhard MH, Yin G, Lin Y (2011) Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. ACS Nano 5:1785–1791Google Scholar
  39. 39.
    Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48:4466–4474Google Scholar
  40. 40.
    Byon HR, Suntivich J, Shao-Horn Y (2011) Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem Mater 23:3421–3428Google Scholar
  41. 41.
    Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S (2011) Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J Phys Chem C 115:11957–11961Google Scholar
  42. 42.
    Liu S, Tian J, Wang L, Sun X (2011) A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49:3158–3164Google Scholar
  43. 43.
    Xu LQ, Yang WJ, Neoh K-G, Kang E-T, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43:8336–8339Google Scholar
  44. 44.
    Tran DN, Kabiri S, Losic D (2014) A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids. Carbon 76:193–202Google Scholar
  45. 45.
    Chua CK, Pumera M (2013) Selective removal of hydroxyl groups from graphene oxide. Chem Eur J 19:2005–2011Google Scholar
  46. 46.
    Wang K, Feng T, Qian M, Ding HI, Chen YW, Sun ZO (2011) The field emission of vacuum filtered graphene films reduced by microwave. Appl Surf Sci 257:5808–5812Google Scholar
  47. 47.
    Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy storage. Chem Mater 21:5004–5006Google Scholar
  48. 48.
    Chen WF, Yan LF, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152Google Scholar
  49. 49.
    Wang D-W, Wu K-H, Gentle IR, Lu GQ (2012) Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature. Carbon 50:3333–3341Google Scholar
  50. 50.
    Zhou TN, Chen F, Liu K, Deng H, Zhang Q, Feng JW, Fu QA (2011) A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 22:045704Google Scholar
  51. 51.
    Liao RJ, Tang ZH, Lei YD, Guo BC (2011) Polyphenol-reduced graphene oxide: mechanism and derivatization. J Phys Chem C 115:20740–20746Google Scholar
  52. 52.
    Seo M, Yoon D, Hwang KS, Kang JW, Kim J (2013) Supercritical alcohols as solvents and reducing agents for the synthesis of reduced graphene oxide. Carbon 64:207–218Google Scholar
  53. 53.
    Chen C, Chen T, Wang H, Sun G, Yang X (2011) A rapid, one-step, variable-valence metal ion assisted reduction method for graphene oxide. Nanotechnology 22(40):405602Google Scholar
  54. 54.
    Jung I, Dikin DA, Piner RD, Ruoff RS (2008) Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett 8:4283–4287Google Scholar
  55. 55.
    Wang S, Ang PK, Wang Z, Tang ALL, Thong JTL, Loh KP (2009) High mobility, printable, and solution-processed graphene electronics. Nano Lett 10:92–98Google Scholar
  56. 56.
    Chen WF, Yan LF (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2:559–563Google Scholar
  57. 57.
    Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227–1233Google Scholar
  58. 58.
    Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998Google Scholar
  59. 59.
    Zhou M, Wang YL, Zhai YM, Zhai JF, Ren W, Wang FA, Dong SJ (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15:6116–6120Google Scholar
  60. 60.
    Chen WF, Yan LF, Bangal PR (2010) Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J Phys Chem C 114:19885–19890Google Scholar
  61. 61.
    Gao X, Tang XS (2014) Effective reduction of graphene oxide thin films by a fluorinating agent: diethylaminosulfur trifluoride. Carbon 76:133–140MathSciNetGoogle Scholar
  62. 62.
    Ahmed MS, Han HS, Jeon S (2013) One-step chemical reduction of graphene oxide with oligothiophene for improved electrocatalytic oxygen reduction reactions. Carbon 61:164–172Google Scholar
  63. 63.
    Ma Q, Song J, Jin C, Li Z, Liu J, Meng S, Zhao J, Guo Y (2013) A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid. Carbon 54:36–41Google Scholar
  64. 64.
    Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432Google Scholar
  65. 65.
    Sui Z, Zhang X, Lei Y, Luo Y (2011) Easy and green synthesis of reduced graphite oxide-based hydrogels. Carbon 49:4314–4321Google Scholar
  66. 66.
    Gao J, Liu F, Liu YL, Ma N, Wang ZQ, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218Google Scholar
  67. 67.
    Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49:2154–2157Google Scholar
  68. 68.
    Chen Y, Shen Y, Sun D, Zhang H, Tian D, Zhang J, Zhu J-J (2011) Fabrication of a dispersible graphene/gold nanoclusters hybrid and its potential application in electrogenerated chemiluminescence. Chem Commun (Camb) 47:11733–5Google Scholar
  69. 69.
    Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2012) A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50:914–921Google Scholar
  70. 70.
    Chu H-J, Lee C-Y, Tai N-H (2014) Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode. Carbon 80:725–733Google Scholar
  71. 71.
    Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL, Zhang FB (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493Google Scholar
  72. 72.
    Zhu CZ, Guo SJ, Fang YX, Dong SJ (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437Google Scholar
  73. 73.
    Liu JB, Fu SH, Yuan B, Li YL, Deng ZX (2010) Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am Chem Soc 132:7279–7281Google Scholar
  74. 74.
    Chen JL, Yan XP (2010) A dehydration and stabilizer-free approach to production of stable water dispersions of graphene nanosheets. J Mater Chem 20:4328–4332Google Scholar
  75. 75.
    Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659Google Scholar
  76. 76.
    Sundaram RS, Gomez-Navarro C, Balasubramanian K, Burghard M, Kern K (2008) Electrochemical modification of graphene. Adv Mater 20:3050–3053Google Scholar
  77. 77.
    Ping J, Wang Y, Fan K, Wu J, Ying Y (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens Bioelectron 28:204–209Google Scholar
  78. 78.
    Guo Y, Wu B, Liu H, Ma Y, Yang Y, Zheng J, Yu G, Liu Y (2011) Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors. Adv Mater 23:4626–30Google Scholar
  79. 79.
    Ramesha GK, Sampath S (2009) Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J Phys Chem C 113:7985–7989Google Scholar
  80. 80.
    Shao YY, Wang J, Engelhard M, Wang CM, Lin YH (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20:743–748Google Scholar
  81. 81.
    Pang H, Lu Q, Gao F (2011) Graphene oxide induced growth of one-dimensional fusiform zirconia nanostructures for highly selective capture of phosphopeptides. Chem Commun (Camb) 47:11772–4Google Scholar
  82. 82.
    Ambrosi A, Pumera M (2013) Precise tuning of surface composition and electron‐transfer properties of graphene oxide films through electroreduction. Chem Eur J 19:4748–4753Google Scholar
  83. 83.
    Cui J, Lai Y, Wang W, Li H, Ma X, Zhan J (2014) Galvanic displacement induced reduction of graphene oxide. Carbon 66:738–741Google Scholar
  84. 84.
    Fan Z, Wang K, Wei T, Yan J, Song L, Shao B (2011) An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48:1686–1689Google Scholar
  85. 85.
    Mei X, Ouyang J (2011) Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397Google Scholar
  86. 86.
    Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195Google Scholar
  87. 87.
    Wu ZS, Ren WC, Gao LB, Liu BL, Jiang CB, Cheng HM (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499Google Scholar
  88. 88.
    Li CC, Yu H, Yan Q, Hng HH (2015) Green synthesis of highly reduced graphene oxide by compressed hydrogen gas towards energy storage devices. J Power Sources 274:310–317Google Scholar
  89. 89.
    Matsumoto Y, Koinuma M, Ida S, Hayami S, Taniguchi T, Hatakeyama K, Tateishi H, Watanabe Y, Amano S (2011) Photoreaction of graphene oxide nanosheets in water. J Phys Chem C 115:19280–19286Google Scholar
  90. 90.
    Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-Assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491Google Scholar
  91. 91.
    Ji T, Hua Y, Sun M, Ma N (2013) The mechanism of the reaction of graphite oxide to reduced graphene oxide under ultraviolet irradiation. Carbon 54:412–418Google Scholar
  92. 92.
    Prezioso S, Perrozzi F, Donarelli M, Stagnini E, Treossi E, Palermo V, Santucci S, Nardone M, Moras P, Ottaviano L (2014) Dose and wavelength dependent study of graphene oxide photoreduction with VUV synchrotron radiation. Carbon 79:478–485Google Scholar
  93. 93.
    Cote LJ, Cruz-Silva R, Huang JX (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032Google Scholar
  94. 94.
    Le Borgne V, Bazi H, Hayashi T, Kim YA, Endo M, El Khakani MA (2014) Hydrogen-assisted pulsed KrF-laser irradiation for the in situ photoreduction of graphene oxide films. Carbon 77:857–867Google Scholar
  95. 95.
    Trusovas R, Ratautas K, Račiukaitis G, Barkauskas J, Stankevičienė I, Niaura G, Mažeikienė R (2013) Reduction of graphite oxide to graphene with laser irradiation. Carbon 52:574–582Google Scholar
  96. 96.
    Huang L, Liu Y, Ji L-C, Xie Y-Q, Wang T, Shi W-Z (2011) Pulsed laser assisted reduction of graphene oxide. Carbon 49:2431–2436Google Scholar
  97. 97.
    Dumée LF, Feng C, He L, Yi Z, She F, Peng Z, Gao W, Banos C, Davies JB, Huynh C (2014) Single step preparation of meso-porous and reduced graphene oxide by gamma-ray irradiation in gaseous phase. Carbon 70:313–318Google Scholar
  98. 98.
    Zhang Y, Li D, Tan X, Zhang B, Ruan X, Liu H, Pan C, Liao L, Zhai T, Bando Y (2013) High quality graphene sheets from graphene oxide by hot-pressing. Carbon 54:143–148Google Scholar
  99. 99.
    Chang DW, Choi H-J, Jeon I-Y, Seo J-M, Dai L, Baek J-B (2014) Solvent-free mechanochemical reduction of graphene oxide. Carbon 77:501–507Google Scholar
  100. 100.
    Eigler S, Dotzer C, Hirsch A (2012) Visualization of defect densities in reduced graphene oxide. Carbon 50:3666–3673Google Scholar
  101. 101.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196Google Scholar
  102. 102.
    Behera SK (2011) Enhanced rate performance and cyclic stability of Fe(3)O(4)-graphene nanocomposites for Li ion battery anodes. Chem Commun 47:10371–10373Google Scholar
  103. 103.
    Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701Google Scholar
  104. 104.
    Gao X, Jang J, Nagase S (2009) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842Google Scholar
  105. 105.
    Kim MC, Hwang GS, Ruoff RS (2009) Epoxide reduction with hydrazine on graphene: a first principles study. J Chem Phys 131:064704Google Scholar
  106. 106.
    Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43:5288–5301Google Scholar
  107. 107.
    Tang X-Z, Li W, Yu Z-Z, Rafiee MA, Rafiee J, Yavari F, Koratkar N (2011) Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4, 6-didodecylamino-1, 3, 5-triazine. Carbon 49:1258–1265Google Scholar
  108. 108.
    Liu ZB, Xu YF, Zhang XY, Zhang XL, Chen YS, Tian JG (2009) Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J Phys Chem B 113:9681–9686Google Scholar
  109. 109.
    Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721Google Scholar
  110. 110.
    Xu YF, Liu ZB, Zhang XL, Wang Y, Tian JG, Huang Y, Ma YF, Zhang XY, Chen YS (2009) A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv Mater 21:1275–1279Google Scholar
  111. 111.
    Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736Google Scholar
  112. 112.
    Zhang YJ, Hu WB, Li B, Peng C, Fan CH, Huang Q (2011) Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process. Nanotechnology 22Google Scholar
  113. 113.
    Zhu J, Li Y, Chen Y, Wang J, Zhang B, Zhang J, Blau WJ (2011) Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49:1900–1905Google Scholar
  114. 114.
    Hu X, Mu L, Wen J, Zhou Q (2012) Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon 50:2772–2781Google Scholar
  115. 115.
    Mejias Carpio IE, Mangadlao JD, Nguyen HN, Advincula RC, Rodrigues DF (2014) Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon 77:289–301Google Scholar
  116. 116.
    Wu H, Shi H, Wang Y, Jia X, Tang C, Zhang J, Yang S (2014) Hyaluronic acid conjugated graphene oxide for targeted drug delivery. Carbon 69:379–389Google Scholar
  117. 117.
    Li Z-F, Zhang H, Liu Q, Liu Y, Stanciu L, Xie J (2014) Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon 71:257–267Google Scholar
  118. 118.
    Veca LM, Lu FS, Meziani MJ, Cao L, Zhang PY, Qi G, Qu LW, Shrestha M, Sun YP (2009) Polymer functionalization and solubilization of carbon nanosheets. Chem Commun 2565–2567Google Scholar
  119. 119.
    Yang YF, Wang J, Zhang J, Liu JC, Yang XL, Zhao HY (2009) Exfoliated graphite oxide decorated by PDMAEMA chains and polymer particles. Langmuir 25:11808–11814Google Scholar
  120. 120.
    Wan Y-J, Tang L-C, Gong L-X, Yan D, Li Y-B, Wu L-B, Jiang J-X, Lai G-Q (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480Google Scholar
  121. 121.
    Dreyer DR, Jarvis KA, Ferreira PJ, Bielawski CW (2011) Graphite oxide as a dehydrative polymerization catalyst: a one-step synthesis of carbon-reinforced poly(phenylene methylene) composites. Macromolecules 44:7659–7667Google Scholar
  122. 122.
    Eda G, Mattevi C, Yamaguchi H, Kim H, Chhowalla M (2009) Insulator to semimetal transition in graphene oxide. J Phys Chem C 113:15768–15771Google Scholar
  123. 123.
    Liu J, Chen G, Jiang M (2011) Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers. Macromolecules 44:7682–7691Google Scholar
  124. 124.
    Krueger M, Berg S, Stone DA, Strelcov E, Dikin DA, Kim J, Cote LJ, Huang J, Kolmakov A (2011) Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples. ACS Nano 5:10047–10054Google Scholar
  125. 125.
    Hu HT, Wang XB, Wang JC, Liu FM, Zhang M, Xu CH (2011) Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl Surf Sci 257:2637–2642Google Scholar
  126. 126.
    Park S, Dikin DA, Nguyen ST, Ruoff RS (2009) Graphene oxide sheets chemically cross-linked by polyallylamine. J Phys Chem C 113:15801–15804Google Scholar
  127. 127.
    An Z, Compton OC, Putz KW, Brinson LC, Nguyen ST (2011) Bio‐inspired borate cross‐linking in ultra‐stiff graphene oxide thin films. Adv Mater 23:3842–3846Google Scholar
  128. 128.
    Gonçalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N, Grácio J (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934Google Scholar
  129. 129.
    McGrail BT, Rodier BJ, Pentzer E (2014) Rapid functionalization of graphene oxide in water. Chem Mater 26:5806–5811Google Scholar
  130. 130.
    Eigler S, Hu Y, Ishii Y, Hirsch A (2013) Controlled functionalization of graphene oxide with sodium azide. Nanoscale 5:12136–12139Google Scholar
  131. 131.
    Kamada S, Nomoto H, Fukuda K, Fukawa T, Shirai H, Kimura M (2011) Noncovalent wrapping of chemically modified graphene with pi-conjugated disk-like molecules. Colloid Polym Sci 289:925–932Google Scholar
  132. 132.
    Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206Google Scholar
  133. 133.
    Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. Acs Appl Mater Inter 3:1821–1826Google Scholar
  134. 134.
    Ballesteros-Garrido R, Rodriguez R, Álvaro M, Garcia H (2014) Photochemistry of covalently functionalized graphene oxide with phenothiazinyl units. Carbon 74:113–119Google Scholar
  135. 135.
    Liu F, Chung S, Oh G, Seo TS (2011) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. Acs Appl Mater Inter 4:922–927Google Scholar
  136. 136.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302Google Scholar
  137. 137.
    Hu K, Gupta MK, Kulkarni DD, Tsukruk VV (2013) Ultra-robust graphene oxide-silk fibroin nanocomposite membranes. Adv Mater 25:2301–2307Google Scholar
  138. 138.
    An SJ, Zhu YW, Lee SH, Stoller MD, Emilsson T, Park S, Velamakanni A, An JH, Ruoff RS (2010) Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett 1:1259–1263Google Scholar
  139. 139.
    Layek RK, Das AK, Park MJ, Kim NH, Lee JH (2015) Enhancement of physical, mechanical, and gas barrier properties in noncovalently functionalized graphene oxide/poly (vinylidene fluoride) composites. Carbon 81:329–338Google Scholar
  140. 140.
    Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 1667–1669Google Scholar
  141. 141.
    Teng C-C, Ma C-CM LC-H, Yang S-Y, Lee S-H, Hsiao M-C, Yen M-Y, Chiou K-C, Lee T-M (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49:5107–5116Google Scholar
  142. 142.
    Paci JT, Belytschko T, Schatz GC (2007) Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J Phys Chem C 111:18099–18111Google Scholar
  143. 143.
    Satti A, Larpent P, Gun’ko Y (2010) Improvement of mechanical properties of graphene oxide/poly (allylamine) composites by chemical crosslinking. Carbon 48:3376–3381Google Scholar
  144. 144.
    Li YQ, Yu T, Yang TY, Zheng LX, Liao K (2012) Bio‐inspired nacre‐like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv Mater 24:3426–3431Google Scholar
  145. 145.
    Cheng Q, Wu M, Li M, Jiang L, Tang Z (2013) Ultratough artificial nacre based on conjugated cross‐linked graphene oxide. Angew Chem Int Ed 125:3838–3843Google Scholar
  146. 146.
    Tian Y, Cao Y, Wang Y, Yang W, Feng J (2013) Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel‐inspired polymers. Adv Mater 25:2980–2983Google Scholar
  147. 147.
    Hu H, Brown PH, Labavitch JM (1996) Species variability in boron requirement is correlated with cell wall pectin. J Exp Bot 47:227–232Google Scholar
  148. 148.
    Sudeep PM, Narayanan TN, Ganesan A, Shaijumon MM, Yang H, Ozden S, Patra PK, Pasquali M, Vajtai R, Ganguli S, Roy AK, Anantharaman MR, Ajayan PM (2013) Covalently interconnected three-dimensional graphene oxide solids. ACS Nano 7:7034–7040Google Scholar
  149. 149.
    Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Müllen K (2013) 3D graphene foams cross‐linked with pre‐encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909–2914Google Scholar
  150. 150.
    Wan W, Li L, Zhao Z, Hu H, Hao X, Winkler DA, Xi L, Hughes TC, Qiu J (2014) Ultrafast fabrication of covalently cross‐linked multifunctional graphene oxide monoliths. Adv. Funct, MaterGoogle Scholar
  151. 151.
    Sun H, Xu Z, Gao C (2013) Synergistically assembled carbon aerogels. Adv Mater 25:2554–2560Google Scholar
  152. 152.
    Huang H, Chen P, Zhang X, Lu Y, Zhan W (2013) Edge‐to‐edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity. Small 9:1397–1404Google Scholar
  153. 153.
    Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223Google Scholar
  154. 154.
    Yang X, Qiu L, Cheng C, Wu Y, Ma ZF, Li D (2011) Ordered gelation of chemically converted graphene for next‐generation electroconductive hydrogel films. Angew Chem Int Ed 50:7325–7328Google Scholar
  155. 155.
    Cong HP, Wang P, Yu SH (2014) Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels. Small 10:448–453Google Scholar
  156. 156.
    Wu L, Ohtani M, Takata M, Saeki A, Seki S, Ishida Y, Aida T (2014) Magnetically induced anisotropic orientation of graphene oxide locked by in situ hydrogelation. ACS Nano 8(5):4640–9Google Scholar
  157. 157.
    Compton OC, Cranford SW, Putz KW, An Z, Brinson LC, Buehler MJ, Nguyen ST (2012) Tuning the mechanical properties of graphene oxide paper and its associated polymer nanocomposites by controlling cooperative intersheet hydrogen bonding. ACS Nano 6:2008–2019Google Scholar
  158. 158.
    Arndt KF (2006) Hydrogel sensors and actuators. Frontiers 4Google Scholar
  159. 159.
    Zhang H, Kuila T, Kim NH, Yu DS, Lee JH (2014) Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon 69:66–78Google Scholar
  160. 160.
    Van Khai T, Na HG, Kwak DS, Kwon YJ, Ham H, Shim KB, Kim HW (2012) Influence of N-doping on the structural and photoluminescence properties of graphene oxide films. Carbon 50:3799–3806Google Scholar
  161. 161.
    Li M, Wu Z, Ren W, Cheng H, Tang N, Wu W, Zhong W, Du Y (2012) The doping of reduced graphene oxide with nitrogen and its effect on the quenching of the material’s photoluminescence. Carbon 50:5286–5291Google Scholar
  162. 162.
    Liu Y, Feng Q, Tang N, Wan X, Liu F, Lv L, Du Y (2013) Increased magnetization of reduced graphene oxide by nitrogen-doping. Carbon 60:549–551Google Scholar
  163. 163.
    Liu Y, Feng Q, Xu Q, Li M, Tang N, Du Y (2013) Synthesis and photoluminescence of F and N co-doped reduced graphene oxide. Carbon 61:436–440Google Scholar
  164. 164.
    Yang J, Jo MR, Kang M, Huh YS, Jung H, Kang Y-M (2014) Rapid and controllable synthesis of nitrogen doped reduced graphene oxide using microwave-assisted hydrothermal reaction for high power-density supercapacitors. Carbon 73:106–113Google Scholar
  165. 165.
    Yang S, Zhi L, Tang K, Feng X, Maier J, Müllen K (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22:3634–3640Google Scholar
  166. 166.
    Chen S, Chen P, Wang Y (2011) Carbon nanotubes grown in situ on graphene nanosheets as superior anodes for Li-ion batteries. Nanoscale 3:4323–4329Google Scholar
  167. 167.
    Wang K, Ruan J, Song H, Zhang JL, Wo Y, Guo SW, Cui DX (2013) Biocompatibility of graphene oxide. Nanoscale Res Lett 8(1):393Google Scholar
  168. 168.
    Liao KH, Lin YS, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. Acs Appl Mater Inter 3:2607–2615Google Scholar
  169. 169.
    Wojtoniszak M, Chen X, Kalenczuk RJ, Wajda A, Lapczuk J, Kurzewski M, Drozdzik M, Chu PK, Borowiak-Palen E (2012) Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf B Biointerfaces 89:79–85Google Scholar
  170. 170.
    Begurn P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919Google Scholar
  171. 171.
    Pan DY, Wang S, Zhao B, Wu MH, Zhang HJ, Wang Y, Jiao Z (2009) Li storage properties of disordered graphene nanosheets. Chem Mater 21:3136–3142Google Scholar
  172. 172.
    Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai HJ (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212Google Scholar
  173. 173.
    Agarwal S, Zhou XZ, Ye F, He QY, Chen GCK, Soo J, Boey F, Zhang H, Chen P (2010) Interfacing live cells with nanocarbon substrates. Langmuir 26:2244–2247,
  174. 174.
    Chang YL, Yang ST, Liu JH, Dong E, Wang YW, Cao AN, Liu YF, Wang HF (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200:201–210Google Scholar
  175. 175.
    Ryoo SR, Kim YK, Kim MH, Min DH (2010) Behaviors of NIH-3 T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. ACS Nano 4:6587–6598Google Scholar
  176. 176.
    Park S, Mohanty N, Suk JW, Nagaraja A, An JH, Piner RD, Cai WW, Dreyer DR, Berry V, Ruoff RS (2010) Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater 22:1736–40Google Scholar
  177. 177.
    Chen H, Muller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–61Google Scholar
  178. 178.
    Ruiz ON, Fernando KAS, Wang BJ, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun YP, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107Google Scholar
  179. 179.
    Bao Q, Zhang D, Qi P (2011) Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. J Colloid Interface Sci 360:463–470Google Scholar
  180. 180.
    Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Coll Surf B Biointerf 83:16–22Google Scholar
  181. 181.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460Google Scholar
  182. 182.
    Buchsteiner A, Lerf A, Pieper J (2006) Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B 110:22328–22338Google Scholar
  183. 183.
    Lerf A, Buchsteiner A, Pieper J, Sch枚ttl S, Dekany I, Szabo T, Boehm HP (2006) Hydration behavior and dynamics of water molecules in graphite oxide. J Phys Chem Solid 67:1106–1110Google Scholar
  184. 184.
    Jung I, Dikin D, Park S, Cai W, Mielke SL, Ruoff RS (2008) Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J Phys Chem C 112:20264–20268Google Scholar
  185. 185.
    Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB (2010) Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano 4:2300–2306Google Scholar
  186. 186.
    Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, Chabal YJ (2010) The role of intercalated water in multilayered graphene oxide. ACS Nano 4:5861–5868Google Scholar
  187. 187.
    Song L, Khoerunnisa F, Gao W, Dou W, Hayashi T, Kaneko K, Endo M, Ajayan PM (2013) Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide. Carbon 52:608–612Google Scholar
  188. 188.
    Gao W, Singh N, Song L, Liu Z, Reddy ALM, Ci LJ, Vajtai R, Zhang Q, Wei BQ, Ajayan PM (2011) Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol 6:496–500Google Scholar
  189. 189.
    Gao W, Wu G, Janicke MT, Cullen DA, Mukundan R, Baldwin JK, Brosha EL, Galande C, Ajayan PM, More KL (2014) Ozonated graphene oxide film as a proton‐exchange membrane. Angew Chem Int Ed 53:3588–3593Google Scholar
  190. 190.
    Karim MR, Hatakeyama K, Matsui T, Takehira H, Taniguchi T, Koinuma M, Matsumoto Y, Akutagawa T, Nakamura T, Noro S-I (2013) Graphene oxide nanosheet with high proton conductivity. J Am Chem Soc 135:8097–8100Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The Department of Textile Engineering, Chemistry & Science, College of TextilesNorth Carolina State UniversityRaleighUSA

Personalised recommendations