Skip to main content

Green Chemical and Biological Synthesis of Nanoparticles and Their Biomedical Applications

  • Chapter
Green Processes for Nanotechnology

Abstract

To generate nanoparticles with particular shapes and dimensions, various techniques including physicochemical and biological routes have been developed. The physical and chemical processes are typically expensive and require hazardous chemicals. In this chapter, we introduce current advancements in the green synthesis of nanoparticles as eco-friendly, cost-effective, and simple approaches. The microbial synthesis of nanoparticles using bacteria, fungi, and viruses; phototrophic eukaryotes including plants, diatoms, and algae; heterotrophic human cell lines and some other biological agents is especially emphasized in this review. It also declares the applications of these nanomaterials in a broad range of potential areas, such as medical biology, labeling, sensors, drug delivery, dentistry, and environmental cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

    Google Scholar 

  2. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Google Scholar 

  3. Ramanavičius A, Kaušaitė A, Ramanavičienė A (2005) Polypyrrole-coated glucose oxidase nanoparticles for biosensor design. Sens Actuators B Chem 111:532–539

    Google Scholar 

  4. Fendler JH (2008) Nanoparticles and nanostructured films: preparation, characterization, and applications. Wiley, New York

    Google Scholar 

  5. Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59–79

    Google Scholar 

  6. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Google Scholar 

  7. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402

    Google Scholar 

  8. Mckenzie LC, Hutchison JE (2004) Green nanoscience: an integrated approach to greener products, processes, and applications. Chimica oggi. Chemistry Today. http://pages.uoregon.edu/cgnn/nanoscience.pdf

  9. Nath D, Banerjee P (2013) Green nanotechnology–a new hope for medical biology. Environ Toxicol Pharmacol 36:997–1014

    Google Scholar 

  10. Chakrabarti S, Fathpour S, Moazzami K, Phillips J, Lei Y, Browning N et al (2004) Pulsed laser annealing of self-organized InAs/GaAs quantum dots. J Electron Mater 33:L5–L8

    Google Scholar 

  11. Mafuné F, Kohno J-y, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120

    Google Scholar 

  12. Shukla S, Seal S (1999) Cluster size effect observed for gold nanoparticles synthesized by sol-gel technique as studied by X-ray photoelectron spectroscopy. Nanostruct Mater 11:1181–1193

    Google Scholar 

  13. Raffi M, Rumaiz AK, Hasan M, Shah SI (2007) Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation. J Mater Res 22:3378–3384

    Google Scholar 

  14. Rosemary M, Pradeep T (2003) Solvothermal synthesis of silver nanoparticles from thiolates. J Colloid Interface Sci 268:81–84

    Google Scholar 

  15. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315

    Google Scholar 

  16. Pérez-Tijerina E, Pinilla MG, Mejía-Rosales S, Ortiz-Méndez U, Torres A, José-Yacamán M (2008) Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation. Faraday Discuss 138:353–362

    Google Scholar 

  17. Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B Environ 69:138–144

    Google Scholar 

  18. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641

    Google Scholar 

  19. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325

    Google Scholar 

  20. Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A Physicochem Eng Asp 202:175–186

    Google Scholar 

  21. Yin Y, Li Z-Y, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527

    Google Scholar 

  22. Kvítek L, Prucek R, Panáček A, Novotný R, Hrbáč J, Zbořil R (2005) The influence of complexing agent concentration on particle size in the process of SERS active silver colloid synthesis. J Mater Chem 15:1099–1105

    Google Scholar 

  23. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Google Scholar 

  24. Le A-T, Huy P, Tam PD, Huy TQ, Cam PD, Kudrinskiy A et al (2010) Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique. Curr Appl Phys 10:910–916

    Google Scholar 

  25. Luque R, Baruwati B, Varma RS (2010) Magnetically separable nanoferrite-anchored glutathione: aqueous homocoupling of arylboronic acids under microwave irradiation. Green Chem 12:1540–1543

    Google Scholar 

  26. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2:1358–1374

    Google Scholar 

  27. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284

    Google Scholar 

  28. Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44:469–478

    Google Scholar 

  29. Polshettiwar V, Varma RS (2008) Microwave-assisted organic synthesis and transformations using benign reaction media. Acc Chem Res 41:629–639

    Google Scholar 

  30. Kappe CO (2006) The use of microwave irradiation in organic synthesis. From laboratory curiosity to standard practice in twenty years. CHIMIA Int J Chem 60:308–312

    Google Scholar 

  31. Polshettiwar V, Nadagouda MN, Varma RS (2009) Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Aust J Chem 62:16–26

    Google Scholar 

  32. Wang Y, Yin L, Palchik O, Hacohen YR, Koltypin Y, Gedanken A (2001) Sonochemical synthesis of layered and hexagonal yttrium-zirconium oxides. Chem Mater 13:1248–1251

    Google Scholar 

  33. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327–358

    Google Scholar 

  34. Troupis A, Hiskia A, Papaconstantinou E (2002) Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew Chem Int Ed 41:1911–1914

    Google Scholar 

  35. Zhang G, Keita B, Dolbecq A, Mialane P, Sécheresse F, Miserque F et al (2007) Green chemistry-type one-step synthesis of silver nanostructures based on MoV–MoVI mixed-valence polyoxometalates. Chem Mater 19:5821–5823

    Google Scholar 

  36. Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M (2007) Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 17:2679–2694

    Google Scholar 

  37. Anastas PT, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  38. Dahl JA, Maddux BL, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269

    Google Scholar 

  39. Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505

    Google Scholar 

  40. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanoparticle Res 10:507–517

    Google Scholar 

  41. Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624

    Google Scholar 

  42. Bao C, Jin M, Lu R, Zhang T, Zhao YY (2003) Preparation of Au nanoparticles in the presence of low generational poly (amidoamine) dendrimer with surface hydroxyl groups. Mater Chem Phys 81:160–165

    Google Scholar 

  43. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresde JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142

    Google Scholar 

  44. Southam G, Saunders JA (2005) The geomicrobiology of ore deposits. Econ Geol 100:1067–1084

    Google Scholar 

  45. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Google Scholar 

  46. Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611–13614

    Google Scholar 

  47. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Google Scholar 

  48. Husseiny M, El-Aziz MA, Badr Y, Mahmoud M (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67:1003–1006

    Google Scholar 

  49. Beveridge T, Murray R (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    Google Scholar 

  50. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170

    Google Scholar 

  51. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    Google Scholar 

  52. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Google Scholar 

  53. Uddin I, Adyanthaya S, Syed A, Selvaraj K, Ahmad A, Poddar P (2008) Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J Nanosci Nanotechnol 8:3909–3913

    Google Scholar 

  54. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109

    Google Scholar 

  55. Vigneshwaran N, Kathe AA, Varadarajan P, Nachane RP, Balasubramanya R (2006) Biomimetics of silver nanoparticles by white rot fungus, Phanerochaete chrysosporium. Colloids Surf B: Biointerfaces 53:55–59

    Google Scholar 

  56. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res 11:2079–2085

    Google Scholar 

  57. Basavaraja S, Balaji S, Lagashetty A, Rajasab A, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    Google Scholar 

  58. Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Google Scholar 

  59. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    Google Scholar 

  60. Birla S, Tiwari V, Gade A, Ingle A, Yadav A, Rai M (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Google Scholar 

  61. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G et al (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    Google Scholar 

  62. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71:133–137

    Google Scholar 

  63. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Google Scholar 

  64. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an Alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Google Scholar 

  65. Gole A, Dash C, Soman C, Sainkar S, Rao M, Sastry M (2001) On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjug Chem 12:684–690

    Google Scholar 

  66. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553

    Google Scholar 

  67. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Google Scholar 

  68. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Google Scholar 

  69. Wong KK, Douglas T, Gider S, Awschalom DD, Mann S (1998) Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chem Mater 10:279–285

    Google Scholar 

  70. Douglas T, Young M (1998) Host–guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Google Scholar 

  71. Archibald DD, Mann S (1993) Template mineralization of self-assembled anisotropic lipid microstructures. Nature 364:430–433

    Google Scholar 

  72. Pazirandeh M, Baral S, Campbell J (1992) Metallized nanotubules derived from bacteria. Biomimetics 1:41–50

    Google Scholar 

  73. Davis SA, Burkett SL, Mendelson NH, Mann S (1997) Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature 385:420–423

    Google Scholar 

  74. Shenton W, Pum D, Sleytr UB, Mann S (1997) Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389:585–587

    Google Scholar 

  75. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256

    Google Scholar 

  76. Lee S-W, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895

    Google Scholar 

  77. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G et al (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci 100:6946–6951

    Google Scholar 

  78. Gardea-Torresdey J, Parsons J, Gomez E, Peralta-Videa J, Troiani H, Santiago P et al (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401

    Google Scholar 

  79. Bali R, Razak N, Lumb A, Harris A (2006) The synthesis of metallic nanoparticles inside live plants. Nanoscience and nanotechnology, 2006 ICONN’06 international conference on IEEE

    Google Scholar 

  80. Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diospyros kaki leaf extracts. Process Biochem 44:1133–1138

    Google Scholar 

  81. Fahmy TY, Mobarak F (2011) Green nanotechnology: a short cut to beneficiation of natural fibers. Int J Biol Macromol 48:134–136

    Google Scholar 

  82. Terry N, Zayed A (1998) Phytoremediation of selenium. In: Frankenberger WT Jr, Engberg RA (eds) Environmental chemistry of selenium. Dekker, New York, pp 633–655

    Google Scholar 

  83. Lamb A, Anderson C, Haverkamp R (2001) The induced accumulation of gold in the plants Brassica juncea, Berkheya coddii and chicory

    Google Scholar 

  84. Gardea-Torresdey J, Tiemann K, Gamez G, Dokken K, Tehuacanero S, Jose-Yacaman M (1999) Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanoparticle Res 1:397–404

    Google Scholar 

  85. Herrera I, Gardea-Torresdey J, Tiemann K, Peralta-Videa J, Armendariz V, Parsons J (2003) Binding of silver (I) ions by alfalfa biomass (Medicago sativa): batch pH, time, temperature, and ionic strength studies. J Hazard Subst Res 4:1–16

    Google Scholar 

  86. Marshall AT, Haverkamp RG, Davies CE, Parsons JG, Gardea-Torresdey JL, van Agterveld D (2007) Accumulation of gold nanoparticles in Brassica juncea. Int J Phytoremediation 9:197–206

    Google Scholar 

  87. Ascencio J, Mejia Y, Liu H, Angeles C, Canizal G (2003) Bioreduction synthesis of Eu-Au nanoparticles. Langmuir 19:5882–5886

    Google Scholar 

  88. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:385601

    Google Scholar 

  89. Awadalla FT, Pesic B (1992) Biosorption of cobalt with the AMT TM metal removing agent. Hydrometallurgy 28:65–80

    Google Scholar 

  90. Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Google Scholar 

  91. Hosea M, Greene B, Mcpherson R, Henzl M, Dale Alexander M, Darnall DW (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg Chim Acta 123:161–165

    Google Scholar 

  92. Xie J, Lee JY, Wang DI, Ting YP (2007) Identification of active biomolecules in the high‐yield synthesis of single‐crystalline gold nanoplates in algal solutions. Small 3:672–682

    Google Scholar 

  93. Drum RW, Gordon R (2003) Star Trek replicators and diatom nanotechnology. Trends Biotechnol 21:325–328

    Google Scholar 

  94. Gekeler W, Grill E, Winnacker E-L, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202

    Google Scholar 

  95. Noll F, Sumper M, Hampp N (2002) Nanostructure of diatom silica surfaces and of biomimetic analogues. Nano Lett 2:91–95

    Google Scholar 

  96. Anshup A, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TS et al (2005) Growth of gold nanoparticles in human cells. Langmuir 21:11562–11567

    Google Scholar 

  97. Guo R, Song Y, Wang G, Murray RW (2005) Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? J Am Chem Soc 127:2752–2757

    Google Scholar 

  98. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Google Scholar 

  99. Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Google Scholar 

  100. Huo Q (2007) A perspective on bioconjugated nanoparticles and quantum dots. Colloids Surf B: Biointerfaces 59:1–10

    Google Scholar 

  101. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Google Scholar 

  102. Aubin-Tam M-E, Hamad-Schifferli K (2008) Structure and function of nanoparticle–protein conjugates. Biomed Mater 3:034001

    Google Scholar 

  103. Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B et al (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684

    Google Scholar 

  104. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269:57–66

    Google Scholar 

  105. Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM et al (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7:1730–1739

    Google Scholar 

  106. De La Isla A, Brostow W, Bujard B, Estevez M, Rodriguez JR, Vargas S et al (2003) Nanohybrid scratch resistant coatings for teeth and bone viscoelasticity manifested in tribology. Mater Res Innov 7:110–114

    Google Scholar 

  107. Hamouda IM (2012) Current perspectives of nanoparticles in medical and dental biomaterials. Journal of Biomedical Research 26:143–151

    Google Scholar 

  108. Bootharaju M, Pradeep T (2010) Uptake of toxic metal ions from water by naked and monolayer protected silver nanoparticles: an X-ray photoelectron spectroscopic investigation. J Phys Chem C 114:8328–8336

    Google Scholar 

  109. Ono A, Togashi H (2004) Highly selective oligonucleotide‐based sensor for mercury (II) in aqueous solutions. Angew Chem Int Ed 43:4300–4302

    Google Scholar 

  110. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II). Angew Chem 119:6948–6952

    Google Scholar 

  111. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobat Tayebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Razavi, M., Salahinejad, E., Fahmy, M., Yazdimamaghani, M., Vashaee, D., Tayebi, L. (2015). Green Chemical and Biological Synthesis of Nanoparticles and Their Biomedical Applications. In: Basiuk, V., Basiuk, E. (eds) Green Processes for Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-15461-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15461-9_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15460-2

  • Online ISBN: 978-3-319-15461-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics