Advertisement

Additives for Functional Electrolytes of Li-Ion Batteries

  • Libo Hu
  • Adam Tornheim
  • Sheng Shui Zhang
  • Zhengcheng Zhang
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The electrolyte is an indispensable element of Li-ion batteries. In normal operation, the electrolyte does not participate in electrochemical reactions but rather conducts ions to enable the electrode reactions on the cathode and anode. The electrolyte is typically composed of a lithium salt as the solute for lithium ions and a solvent or mixed solvent as the medium for ionic conduction.

Keywords

Lithium Salt Vinylene Carbonate Anion Receptor Redox Shuttle Flame Retardant Additive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abe K, Miyoshi K, Hattori T, Ushigoe Y, Yoshitake H (2008) Functional electrolytes: synergetic effect of electrolyte additives for lithium-ion battery. J Power Sources 184:449–455. doi: 10.1016/j.jpowsour.2008.03.037 CrossRefGoogle Scholar
  2. 2.
    Abe K, Yoshitake H, Kitakura T, Hattori T, Wang HY, Yoshio M (2004) Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries. Electrochim Acta 49:4613–4622. doi: 10.1016/j.electacta.2004.05.016 CrossRefGoogle Scholar
  3. 3.
    Abouimrane A, Odom SA, Tavassol H, Schulmerich MV, Wu H, Bhargava R, Gewirth AA, Moore JS, Amine K (2013) 3-Hexylthiophene as a stabilizing additive for high voltage cathodes in lithium-ion batteries. J Electrochem Soc 160:A268–A271. doi: 10.1149/2.039302jes CrossRefGoogle Scholar
  4. 4.
    Abraham KM, Pasquariello DM, Willstaedt EB (1990) n-Butylferrocene for overcharge protection of secondary lithium batteries. J Electrochem Soc 137:1856–1857. doi: 10.1149/1.2086817 CrossRefGoogle Scholar
  5. 5.
    Ahn S, Kim H-S, Yang S, Do JY, Kim BH, Kim K (2009) Thermal stability and performance studies of LiCo1/3Ni1/3Mn1/3O2 with phosphazene additives for Li-ion batteries. J Electroceram 23:289–294. doi: 10.1007/s10832-008-9437-y
  6. 6.
    An Y, Zuo P, Du C, Ma Y, Cheng X, Lin J, Yin G (2012) Effects of VC-LiBOB binary additives on SEI formation in ionic liquid-organic composite electrolyte. RSC Adv 2:4097–4102. doi: 10.1039/c2ra01040b CrossRefGoogle Scholar
  7. 7.
    Andersson AM, Edstrom K (2001) Chemical composition and morphology of the elevated temperature SEI on graphite. J Electrochem Soc 148:A1100–A1109. doi: 10.1149/1.1397771 CrossRefGoogle Scholar
  8. 8.
    Applestone D, Manthiram A (2012) Symmetric cell evaluation of the effects of electrolyte additives on Cu2Sb-Al2O3-C nanocomposite anodes. J Power Sources 217:1–5. doi: 10.1016/j.jpowsour.2012.05.119
  9. 9.
    Aravindan V, Cheah YL, Ling WC, Madhavi S (2012) Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J Electrochem Soc 159:A1435–A1439. doi: 10.1149/2.024209jes CrossRefGoogle Scholar
  10. 10.
    Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim Acta 47:1423–1439. doi: 10.1016/s0013-4686(01)00858-1 CrossRefGoogle Scholar
  11. 11.
    Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D (2007) Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries. J Power Sources 165:491–499. doi: 10.1016/j.jpowsour.2006.10.025 CrossRefGoogle Scholar
  12. 12.
    Bae S-Y, Shim E-G, Kim D-W (2013) Effect of ionic liquid as a flame-retarding additive on the cycling performance and thermal stability of lithium-ion batteries. J Power Sources 244:266–271. doi: 10.1016/j.jpowsour.2013.01.100 CrossRefGoogle Scholar
  13. 13.
    Bae S-Y, Shin W-K, Kim D-W (2014) Protective organic additives for high voltage LiNi0 . 5Mn1 .5O4 cathode materials. Electrochim Acta 125:497–502. doi: 10.1016/j.electacta.2014.01.124
  14. 14.
    Belharouak I, Koenig GM Jr, Tan T, Yumoto H, Ota N, Amine K (2012) Performance degradation and gassing of Li4Ti5O12/LiMn2O4 lithium-ion cells. J Electrochem Soc 159:A1165–A1170. doi: 10.1149/2.013208jes
  15. 15.
    Belov DG, Shieh DT (2014) A study of tetrabromobisphenol A (TBBA) as a flame retardant additive for Li-ion battery electrolytes. J Power Sources 247:865–875. doi: 10.1016/j.jpowsour.2013.08.143 CrossRefGoogle Scholar
  16. 16.
    Bouayad H, Wang Z, Dupre N, Dedryvere R, Foix D, Franger S, Martin JF, Boutafa L, Patoux S, Gonbeau D, Guyomard D (2014) Improvement of electrode/electrolyte interfaces in high-voltage spinel lithium-ion batteries by using glutaric anhydride as electrolyte additive. J Phys Chem C 118:4634–4648. doi: 10.1021/jp5001573 CrossRefGoogle Scholar
  17. 17.
    Buhrmester C, Chen J, Moshurchak L, Jiang JW, Wang RL, Dahn JR (2005) Studies of aromatic redox shuttle additives for LiFePO4-based Li-ion cells. J Electrochem Soc 152:A2390–A2399. doi: 10.1149/1.2098265
  18. 18.
    Buhrmester C, Moshurchak L, Wang RL, Dahn JR (2006) Phenothiazine molecules-possible redox shuttle additives for chemical overcharge and overdischarge protection for lithium-ion batteries. J Electrochem Soc 153:A288–A294. doi: 10.1149/1.2140615 CrossRefGoogle Scholar
  19. 19.
    Buiel E, Dahn JR (1999) Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim Acta 45:121–130. doi: 10.1016/s0013-4686(99)00198-x CrossRefGoogle Scholar
  20. 20.
    Cha CS, Ai XP, Yang HX (1995) Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. J Power Sources 54:255–258. doi: 10.1016/0378-7753(94)02079-i CrossRefGoogle Scholar
  21. 21.
    Chen L, Wang K, Xie X, Xie J (2006) Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive. Electrochem Solid-State Lett 9:A512–A515. doi: 10.1149/1.2338771 CrossRefGoogle Scholar
  22. 22.
    Chen L, Wang K, Xie X, Xie J (2007) Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J Power Sources 174:538–543. doi: 10.1016/j.jpowsour.2007.06.149 CrossRefGoogle Scholar
  23. 23.
    Chen X, Li X, Mei D, Feng J, Hu MY, Hu J, Engelhard M, Zheng J, Xu W, Xiao J, Liu J, Zhang J-G (2014) Reduction mechanism of fluoroethylene carbonate for stable solid-electrolyte interphase film on silicon anode. Chemsuschem 7:549–554. doi: 10.1002/cssc.201300770 CrossRefGoogle Scholar
  24. 24.
    Chen Z, Amine K (2006) Tris(pentafluorophenyl) borane as an additive to improve the power capabilities of lithium-ion batteries. J Electrochem Soc 153:A1221–A1225. doi: 10.1149/1.2194633 CrossRefGoogle Scholar
  25. 25.
    Chen Z, Amine K (2007) Bifunctional electrolyte additive for lithium-ion batteries. Electrochem Commun 9:703–707. doi: 10.1016/j.elecom.2006.11.002 CrossRefGoogle Scholar
  26. 26.
    Chen Z, Liu J, Jansen AN, GirishKumar G, Casteel B, Amine K (2010) Lithium borate cluster salts as redox shuttles for overcharge protection of lithium-ion cells. Electrochem Solid-State Lett 13:A39–A42. doi: 10.1149/1.3299251 CrossRefGoogle Scholar
  27. 27.
    Chen Z, Qin Y, Amine K (2009) Redox shuttles for safer lithium-ion batteries. Electrochim Acta 54:5605–5613. doi: 10.1016/j.electacta.2009.05.017 CrossRefGoogle Scholar
  28. 28.
    Chen Z, Qin Y, Amine K (2010) Chemical overcharge protection of lithium-ion cells. Nova Science Publishers, Inc., New York, pp 119–146Google Scholar
  29. 29.
    Chen ZH, Amine K (2007) Bifunctional electrolyte additive for lithium-ion batteries. Electrochem Commun 9:703–707. doi: 10.1016/j.elecom.2006.11.002 CrossRefGoogle Scholar
  30. 30.
    Choi J-A, Sun Y-K, Shim E-G, Scrosati B, Kim D-W (2011) Effect of 1-butyl-1-methylpyrrolidinium hexafluorophosphate as a flame-retarding additive on the cycling performance and thermal properties of lithium-ion batteries. Electrochim Acta 56:10179–10184. doi: 10.1016/j.electacta.2011.09.009 CrossRefGoogle Scholar
  31. 31.
    Choi N-S, Lee YM, Cho KY, Ko D-H, Park J-K (2004) Protective layer with oligo(ethylene glycol) borate anion receptor for lithium metal electrode stabilization. Electrochem Commun 6:1238–1242. doi: 10.1016/j.elecom.2004.09.023 CrossRefGoogle Scholar
  32. 32.
    Choi N-S, Yew KH, Lee KY, Sung M, Kim H, Kim S-S (2006) Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J Power Sources 161:1254–1259. doi: 10.1016/j.jpowsour.2006.05.049 CrossRefGoogle Scholar
  33. 33.
    Chung G-C, Kim H-J, Yu S-I, Jun S-H, Choi J-W, Kim M-H (2000) Origin of graphite exfoliation; an investigation of the important role of solvent cointercalation. J Electrochem Soc 147:4391–4398. doi: 10.1149/1.1394076 CrossRefGoogle Scholar
  34. 34.
    Dahn JR, Jiang J, Moshurchak LM, Fleischauer MD, Buhrmester C, Krause LJ (2005) High-rate overcharge protection of LiFePO4-based Li-ion cells using the redox shuttle additive 2,5-ditertbutyl-1,4-dimethoxybenzene. J Electrochem Soc 152:A1283–A1289. doi: 10.1149/1.1906025
  35. 35.
    Dalavi S, Guduru P, Lucht BL (2012) Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes. J Electrochem Soc 159:A642–A646. doi: 10.1149/2.076205jes CrossRefGoogle Scholar
  36. 36.
    El Ouatani L, Dedryvere R, Siret C, Biensan P, Reynaud S, Iratcabal P, Gonbeau D (2009) The effect of vinylene carbonate additive on surface film formation on both electrodes in Li-ion batteries. J Electrochem Soc 156:A103–A113. doi: 10.1149/1.3029674 CrossRefGoogle Scholar
  37. 37.
    Elazari R, Salitra G, Gershinsky G, Garsuch A, Panchenko A, Aurbach D (2012) Li ion cells comprising lithiated columnar silicon film anodes, TiS2 cathodes and fluoroethylene carbonate (FEC) as a critically important component. J Electrochem Soc 159:A1440–A1445. doi: 10.1149/2.029209jes CrossRefGoogle Scholar
  38. 38.
    Ergun S, Elliott CF, Kaur AP, Parkin SR, Odom SA (2014) Controlling oxidation potentials in redox shuttle candidates for lithium-ion batteries. J Phys Chem C 118:14824–14832. doi: 10.1021/jp503767h CrossRefGoogle Scholar
  39. 39.
    Etacheri V, Haik O, Goffer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D (2012) Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 28:965–976. doi: 10.1021/la203712s CrossRefGoogle Scholar
  40. 40.
    Fei S-T, Allcock HR (2010) Methoxyethoxyethoxyphosphazenes as ionic conductive fire retardant additives for lithium battery systems. J Power Sources 195:2082–2088. doi: 10.1016/j.jpowsour.2009.09.043 CrossRefGoogle Scholar
  41. 41.
    Felix Cheng J-H, Hy S, Rick J, Wang F-M, Hwang B-J (2013) Mechanistic basis of enhanced capacity retention found with novel sulfate-based additive in high-voltage Li-ion batteries. J Phys Chem C 117:22619–22626. doi: 10.1021/jp409779x CrossRefGoogle Scholar
  42. 42.
    Feng JK, Ai XP, Cao YL, Yang HX (2006) A highly soluble dimethoxybenzene derivative as a redox shuttle for overcharge protection of secondary lithium batteries. Electrochem Commun 9:25–30. doi: 10.1016/j.elecom.2006.08.033 CrossRefGoogle Scholar
  43. 43.
    Feng JK, Cao YL, Ai XP, Yang HX (2008) Tri-(4-methoxyphenyl) phosphate: a new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries. Electrochim Acta 53:8265–8268. doi: 10.1016/j.electacta.2008.05.024 CrossRefGoogle Scholar
  44. 44.
    Feng XM, Ai XP, Yang HX (2004) Possible use of methylbenzenes as electrolyte additives for improving the overcharge tolerances of Li-ion batteries. J Appl Electrochem 34:1199–1203. doi: 10.1007/s10800-004-0771-8 CrossRefGoogle Scholar
  45. 45.
    Fridman K, Sharabi R, Elazari R, Gershinsky G, Markevich E, Salitra G, Aurbach D, Garsuch A, Lampert J (2013) A new advanced lithium ion battery: combination of high performance amorphous columnar silicon thin film anode, 5 V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution. Electrochem Commun 33:31–34. doi: 10.1016/j.elecom.2013.04.010
  46. 46.
    Ha S-Y, Han J-G, Song Y-M, Chun M-J, Han S-I, Shin W-C, Choi N-S (2013) Using a lithium bis(oxalato) borate additive to improve electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathodes at 60 °C. Electrochim Acta 104:170–177. doi: 10.1016/j.electacta.2013.04.082
  47. 47.
    Han G-B, Lee J-N, Choi JW, Park J-K (2011) Tris(pentafluorophenyl) borane as an electrolyte additive for high performance silicon thin film electrodes in lithium ion batteries. Electrochim Acta 56:8997–9003. doi: 10.1016/j.electacta.2011.07.136 CrossRefGoogle Scholar
  48. 48.
    He Y-B, Li B, Liu M, Zhang C, Lv Lv, Yang C, Li J, Du H, Zhang B, Yang Q-H, Kim J-K, Kang F (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2:00919. doi: 10.1038/srep00913
  49. 49.
    He Y-B, Liu M, Huang Z-D, Zhang B, Yu Y, Li B, Kang F, Kim J-K (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276. doi: 10.1016/j.jpowsour.2013.03.141
  50. 50.
    Herstedt M, Stjerndahl M, Gustafsson T, Edstrom K (2003) Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery. Electrochem Commun 5:467–472. doi: 10.1016/s1388-2481(03)00106-1 CrossRefGoogle Scholar
  51. 51.
    Hu J, Jin Z, Zhong H, Zhan H, Zhou Y, Li Z (2012) A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries. J Power Sources 197:297–300. doi: 10.1016/j.jpowsour.2011.09.012 CrossRefGoogle Scholar
  52. 52.
    Hu L, Xue Z, Amine K, Zhang Z (2014) Fluorinated electrolytes for 5-V Li-ion chemistry: synthesis and evaluation of an additive for high-voltage LiNi0.5Mn1.5O4/graphite cell. J Electrochem Soc 161:A1777–A1781. doi: 10.1149/2.0141412jes
  53. 53.
    Hu M, Wei J, Xing L, Zhou Z (2012) Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. J Appl Electrochem 42:291–296. doi: 10.1007/s10800-012-0398-0 CrossRefGoogle Scholar
  54. 54.
    Hu Y, Kong W, Li H, Huang X, Chen L (2004) Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries. Electrochem Commun 6:126–131. doi: 10.1016/j.elecom.2003.10.024 CrossRefGoogle Scholar
  55. 55.
    Huang W, Xing L, Wang Y, Xu M, Li W, Xie F, Xia S (2014) 4-(Trifluoromethyl)-benzonitrile: a novel electrolyte additive for lithium nickel manganese oxide cathode of high voltage lithium ion battery. J Power Sources 267:560–565. doi: 10.1016/j.jpowsour.2014.05.124 CrossRefGoogle Scholar
  56. 56.
    Iwayasu N, Honbou H, Horiba T (2011) Overcharge protection effect and reaction mechanism of cyclohexylbenzene for lithium ion batteries. J Power Sources 196:3881–3886. doi: 10.1016/j.jpowsour.2010.12.082 CrossRefGoogle Scholar
  57. 57.
    Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 coils. J Electrochem Soc 143:2204–2211. doi: 10.1149/1.1836981 CrossRefGoogle Scholar
  58. 58.
    Jeong S-K, Inaba M, Mogi R, Iriyama Y, Abe T, Ogumi Z (2001) Surface film formation on a graphite negative electrode in lithium-ion batteries: atomic force microscopy study on the effects of film-forming additives in propylene carbonate solutions. Langmuir 17:8281–8286. doi: 10.1021/la015553h CrossRefGoogle Scholar
  59. 59.
    Jung HM, Park S-H, Jeon J, Choi Y, Yoon S, Cho J-J, Oh S, Kang S, Han Y-K, Lee H (2013) Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate. J Mater Chem A 1:11975–11981. doi: 10.1039/c3ta12580g CrossRefGoogle Scholar
  60. 60.
    Jung SC, Choi JW, Han Y-K (2012) Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale. Nano Lett 12:5342–5347. doi: 10.1021/nl3027197 CrossRefGoogle Scholar
  61. 61.
    Kam D, Kim K, Kim H-S, Liu HK (2009) Studies on film formation on cathodes using pyrazole derivatives as electrolyte additives in the Li-ion battery. Electrochem Commun 11:1657–1660. doi: 10.1016/j.elecom.2009.06.020 CrossRefGoogle Scholar
  62. 62.
    Kim K, Ahn S, Kim H-S, Liu HK (2009) Electrochemical and thermal properties of 2,4,6-tris(trifluoromethyl)-1,3,5-triazine as a flame retardant additive in Li-ion batteries. Electrochim Acta 54:2259–2265. doi: 10.1016/j.electacta.2008.10.043 CrossRefGoogle Scholar
  63. 63.
    Komaba S, Itabashi T, Ohtsuka T, Groult H, Kumagai N, Kaplan B, Yashiro H (2005) Impact of 2-vinylpyridine as electrolyte additive on surface and electrochemistry of graphite for C/LiMn2O4 Li-ion cells. J Electrochem Soc 152:A937–A946. doi: 10.1149/1.1885385 CrossRefGoogle Scholar
  64. 64.
    Komaba S, Kumagai N, Kataoka Y (2002) Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries. Electrochim Acta 47:1229–1239. doi: 10.1016/s0013-4686(01)00847-7 CrossRefGoogle Scholar
  65. 65.
    Korepp C, Kern W, Lanzer EA, Raimann PR, Besenhard JO, Yang M, Moeller KC, Shieh DT, Winter M (2007) Ethyl isocyanate—an electrolyte additive from the large family of isocyanates for PC-based electrolytes in lithium-ion batteries. J Power Sources 174:628–631. doi: 10.1016/j.jpowsour.2007.06.140 CrossRefGoogle Scholar
  66. 66.
    Lee H, Choi S, Choi S, Kim H-J, Choi Y, Yoon S, Cho J-J (2007) SEI layer-forming additives for LiNi0.5Mn1.5O4/graphite 5 V Li-ion batteries. Electrochem Commun 9:801–806. doi: 10.1016/j.elecom.2006.11.008
  67. 67.
    Lee HS, Sun X, Yang XQ, McBreen J (2002) Synthesis and study of new cyclic boronate additives for lithium battery electrolytes. J Electrochem Soc 149:A1460–A1465. doi: 10.1149/1.1513559 CrossRefGoogle Scholar
  68. 68.
    Lee HS, Sun X, Yang XQ, McBreen J, Callahan JH, Choi LS (2000) Synthesis of cyclic aza-ether compounds and studies of their use as anion receptors in nonaqueous lithium halide salts solution. J Electrochem Soc 147:9–14. doi: 10.1149/1.1493856 CrossRefGoogle Scholar
  69. 69.
    Lee HS, Yang XQ, McBreen J, Okamoto Y, Choi LS (1995) A new family of anion receptors and their effect on ion pair dissociation and conductivity of lithium salts in non-aqueous solutions. Electrochim Acta 40:2353–2356. doi: 10.1016/0013-4686(95)00192-h CrossRefGoogle Scholar
  70. 70.
    Lee HS, Yang XQ, Xiang CL, McBreen J (1998) The synthesis of a new family of boron-based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions. J Electrochem Soc 145:2813–2818. doi: 10.1149/1.1838719 CrossRefGoogle Scholar
  71. 71.
    Lee JT, Lin YW, Jan YS (2004) Allyl ethyl carbonate as an additive for lithium-ion battery electrolytes. J Power Sources 132:244–248. doi: 10.1016/j.jpowsour.2004.01.045 CrossRefGoogle Scholar
  72. 72.
    Lee Y-S, Lee K-S, Sun Y-K, Lee YM, Kim D-W (2011) Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode. J Power Sources 196:6997–7001. doi: 10.1016/j.jpowsour.2010.10.047
  73. 73.
    Lee YM, Seo JE, Choi N-S, Park J-K (2005) Influence of tris(pentafluorophenyl) borane as an anion receptor on ionic conductivity of LiClO4-based electrolyte for lithium batteries. Electrochim Acta 50:2843–2848. doi: 10.1016/j.electacta.2004.11.058
  74. 74.
    Li B, Bhat V, Shan J, Cheng G, Yang J-H, O’Neill C, Caldwell MA, Tong W, Kaye SS (2012) High throughput synthesis and screening for discovery of improved electrode materials for lithium-ion batteries. American Chemical Society, Washington DC, pp PETR-4Google Scholar
  75. 75.
    Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W (2013) A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery. J Mater Chem A 1:12954–12961. doi: 10.1039/c3ta13067c CrossRefGoogle Scholar
  76. 76.
    Li B, Xu M, Li B, Liu Y, Yang L, Li W, Hu S (2013) Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries. Electrochim Acta 105:1–6. doi: 10.1016/j.electacta.2013.04.142 CrossRefGoogle Scholar
  77. 77.
    Li J, Yao W, Meng YS, Yang Y (2008) Effects of vinyl ethylene carbonate additive on elevated-temperature performance of cathode material in lithium ion batteries. J Phys Chem C 112:12550–12556. doi: 10.1021/jp800336n CrossRefGoogle Scholar
  78. 78.
    Li LF, Lee HS, Li H, Yang XQ, Huang XJ (2009) A pentafluorophenylboron oxalate additive in non-aqueous electrolytes for lithium batteries. Electrochem Commun 11:2296–2299. doi: 10.1016/j.elecom.2009.10.015 CrossRefGoogle Scholar
  79. 79.
    Li LL, Li L, Wang B, Liu LL, Wu YP, van Ree T, Thavhiwa KA (2011) Methyl phenyl bis-methoxydiethoxysilane as bi-functional additive to propylene carbonate-based electrolyte for lithium ion batteries. Electrochim Acta 56:4858–4864. doi: 10.1016/j.electacta.2011.02.117 CrossRefGoogle Scholar
  80. 80.
    Li Y, Xu G, Yao Y, Xue L, Zhang S, Lu Y, Toprakci O, Zhang X (2013) Improvement of cyclability of silicon-containing carbon nanofiber anodes for lithium-ion batteries by employing succinic anhydride as an electrolyte additive. J Solid State Electrochem 17:1393–1399. doi: 10.1007/s10008-013-2005-7 CrossRefGoogle Scholar
  81. 81.
    Li Y, Zhang R, Liu J, Yang C (2009) Effect of heptamethyldisilazane as an additive on the stability performance of LiMn2O4 cathode for lithium-ion battery. J Power Sources 189:685–688. doi: 10.1016/j.jpowsour.2008.08.075
  82. 82.
    Liu J, Chen Z, Busking S, Belharouak I, Amine K (2007) Effect of electrolyte additives in improving the cycle and calendar life of graphite/Li1.1[Ni1/3Co1 /3Mn1 /3]0.9O2 Li-ion cells. J Power Sources 174:852–855. doi: 10.1016/j.jpowsour.2007.06.225
  83. 83.
    Liu JY, Liu N, Liu DT, Bai Y, Shi LH, Wang ZX, Chen LQ, Hennige V, Schuch A (2007) Improving the performances of LiCoO2 cathode materials by soaking nano-alumina in commercial electrolyte. J Electrochem Soc 154:A55–A63. doi: 10.1149/1.2388731
  84. 84.
    Liu Y, Tan L, Li L (2013) Tris(trimethylsilyl) borate as an electrolyte additive to improve the cyclability of LiMn2O4 cathode for lithium-ion battery. J Power Sources 221:90–96. doi: 10.1016/j.jpowsour.2012.08.028
  85. 85.
    Lu DS, Xu MQ, Zhou L, Garsuch A, Lucht BL (2013) Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J Electrochem Soc 160:A3138–A3143. doi: 10.1149/2.022305jes
  86. 86.
    Martinez de la Hoz JM, Balbuena PB (2014) Reduction mechanisms of additives on Si anodes of Li-ion batteries. Phys Chem Chem Phys: Ahead of Print. doi: 10.1039/c4cp01948b
  87. 87.
    Matsumoto K, Nakahara K, Inoue K, Iwasa S, Nakano K, Kaneko S, Ishikawa H, Utsugi K, Yuge R (2014) Performance improvement of Li ion battery with non-flammable TMP mixed electrolyte by optimization of lithium salt concentration and SEI preformation technique on graphite anode. J Electrochem Soc 161:A831–A834. doi: 10.1149/2.091405jes CrossRefGoogle Scholar
  88. 88.
    Morita M, Hayashida H, Matsuda Y (1987) Effects of crown-ether addition to organic electrolytes on the cycling behavior of the TiS2 electrode. J Electrochem Soc 134:2107–2111. doi: 10.1149/1.2100833
  89. 89.
    Moshurchak LM, Buhrmester C, Dahn JR (2008) Triphenylamines as a class of redox shuttle molecules for the overcharge protection of lithium-ion cells. J Electrochem Soc 155:A129–A131. doi: 10.1149/1.2816229 CrossRefGoogle Scholar
  90. 90.
    Moshurchak LM, Buhrmester C, Wang RL, Dahn JR (2007) Comparative studies of three redox shuttle molecule classes for overcharge protection of LiFePO4-based Li-ion cells. Electrochim Acta 52:3779–3784. doi: 10.1016/j.electacta.2006.10.068
  91. 91.
    Moshurchak LM, Lamanna WM, Bulinski M, Wang RL, Garsuch RR, Jiang J, Magnuson D, Triemert M, Dahn JR (2009) High-potential redox shuttle for use in lithium-ion batteries. J Electrochem Soc 156:A309–A312. doi: 10.1149/1.3077578 CrossRefGoogle Scholar
  92. 92.
    Nagasubramanian G, Attia AI, Halpert G (1992) Effects of 12-crown-4 ether on the electrochemical performance of CoO2 and TiS2 cathodes in Li polymer electrolyte cells. J Electrochem Soc 139:3043–3046. doi: 10.1149/1.2069030
  93. 93.
    Nagasubramanian G, Distefano S (1990) 12-Crown-4 ether-assisted enhancement of ionic-conductivity and interfacial kinetics in polyethylene oxide electrolytes. J Electrochem Soc 137:3830–3835. doi: 10.1149/1.2086309 CrossRefGoogle Scholar
  94. 94.
    Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158:A798–A801. doi: 10.1149/1.3589300 CrossRefGoogle Scholar
  95. 95.
    Nam T-H, Shim E-G, Kim J-G, Kim H-S, Moon S-I (2008) Diphenyloctyl phosphate and tris(2,2,2-trifluoroethyl) phosphite as flame-retardant additives for Li-ion cell electrolytes at elevated temperature. J Power Sources 180:561–567. doi: 10.1016/j.jpowsour.2008.01.061 CrossRefGoogle Scholar
  96. 96.
    Narayanan SR, Surampudi S, Attia AI, Bankston CP (1991) Analysis of redox additive-based overcharge protection for rechargeable lithium batteries. J Electrochem Soc 138:2224–2229. doi: 10.1149/1.2085954 CrossRefGoogle Scholar
  97. 97.
    Nguyen DN, Park IJ, Kim JG (2012) Triethyl and tributyl phosphite as flame-retarding additives in Li-ion batteries. Met Mater Int 18:189–196. doi: 10.1007/s12540-012-0025-y CrossRefGoogle Scholar
  98. 98.
    Park I-J, Nam T-H, Kim J-G (2013) Diphenyloctyl phosphate as a solid electrolyte interphase forming additive for Li-ion batteries. J Power Sources 244:122–128. doi: 10.1016/j.jpowsour.2013.03.031 CrossRefGoogle Scholar
  99. 99.
    Park Y, Shin SH, Hwang H, Lee SM, Kim SP, Choi HC, Jung YM (2014) Investigation of solid electrolyte interface (SEI) film on LiCoO2 cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS). J Mol Struct 1069:157–163. doi: 10.1016/j.molstruc.2014.01.041
  100. 100.
    Peled E (1979) The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126:2047–2051. doi: 10.1149/1.2128859 CrossRefGoogle Scholar
  101. 101.
    Pieczonka NPW, Liu ZY, Lu P, Olson KL, Moote J, Powell BR, Kim JH (2013) Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C 117:15947–15957. doi: 10.1021/Jp405158m CrossRefGoogle Scholar
  102. 102.
    Pieczonka NPW, Yang L, Balogh MP, Powell BR, Chemelewski K, Manthiram A, Krachkovskiy SA, Goward GR, Liu M, Kim J-H (2013) Impact of lithium bis(oxalate)borate electrolyte additive on the performance of high-voltage spinel/graphite Li-ion batteries. J Phys Chem C 117:22603–22612. doi: 10.1021/jp408717x CrossRefGoogle Scholar
  103. 103.
    Profatilova IA, Stock C, Schmitz A, Passerini S, Winter M (2013) Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate. J Power Sources 222:140–149. doi: 10.1016/j.jpowsour.2012.08.066 CrossRefGoogle Scholar
  104. 104.
    Qin Y, Chen Z, Lee HS, Yang XQ, Amine K (2010) Effect of anion receptor additives on electrochemical performance of lithium-ion batteries. J Phys Chem C 114:15202–15206. doi: 10.1021/jp104341t CrossRefGoogle Scholar
  105. 105.
    Rectenwald MF, Gaffen JR, Rheingold AL, Morgan AB, Protasiewicz JD (2014) Phosphoryl-rich flame-retardant ions (FRIONs): towards safer lithium-ion batteries. Angew Chem Int Ed 53:4173–4176. doi: 10.1002/anie.201310867 CrossRefGoogle Scholar
  106. 106.
    Ronci F, Reale P, Scrosati B, Panero S, Rossi Albertini V, Perfetti P, di Michiel M, Merino JM (2002) High-resolution in-situ structural measurements of the Li4/3Ti5/3O4 “zero-strain” insertion material. J Phys Chem B 106:3082–3086. doi: 10.1021/jp013240p
  107. 107.
    Ryou M-H, Lee J-N, Lee DJ, Kim W-K, Choi JW, Park J-K, Lee YM (2013) 2-(triphenylphosphoranylidene)succinic anhydride as a new electrolyte additive to improve high temperature cycle performance of LiMn2O4/graphite Li-ion batteries. Electrochim Acta 102:97–103. doi: 10.1016/j.electacta.2013.03.129
  108. 108.
    Ryu Y-G, Lee S, Mah S, Lee DJ, Kwon K, Hwang S, Doo S (2008) Electrochemical behavior of silicon electrodes in lithium salt solutions containing alkoxy silane additives. J Electrochem Soc 155:A583–A589. doi: 10.1149/1.2940310 CrossRefGoogle Scholar
  109. 109.
    Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451. doi: 10.1016/j.jpowsour.2010.03.067
  110. 110.
    Santner HJ, Moller KC, Ivanco J, Ramsey MG, Netzer FP, Yamaguchi S, Besenhard JO, Winter M (2003) Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. J Power Sources 119–121:368–372. doi: 10.1016/s0378-7753(03)00268-4 CrossRefGoogle Scholar
  111. 111.
    Sharabi R, Markevich E, Fridman K, Gershinsky G, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Bruenig C (2013) Electrolyte solution for the improved cycling performance of LiCoPO4/C composite cathodes. Electrochem Comm 28:20–23. doi: 10.1016/j.elecom.2012.12.001
  112. 112.
    Schartel B (2010) Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials 3:4710–4745. doi: 10.3390/ma3104710 CrossRefGoogle Scholar
  113. 113.
    Schroeder G, Gierczyk B, Waszak D, Kopczyk M, Walkowiak M (2006) Vinyl tris-2-methoxyethoxy silane—a new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochem Commun 8:523–527. doi: 10.1016/j.elecom.2006.01.021 CrossRefGoogle Scholar
  114. 114.
    Shim E-G, Nam T-H, Kim J-G, Kim H-S, Moon S-I (2008) Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries. J Power Sources 175:533–539. doi: 10.1016/j.jpowsour.2007.08.098 CrossRefGoogle Scholar
  115. 115.
    Shim E-G, Nam T-H, Kim J-G, Kim H-S, Moon S-I (2009) Effects of trioctyl phosphate and cresyl diphenyl phosphate as flame-retarding additives for Li-ion battery electrolytes. Met Mater Int 15:615–621. doi: 10.1007/s12540-009-0615-5 CrossRefGoogle Scholar
  116. 116.
    Shim E-G, Park I-J, Nam T-H, Kim J-G, Kim H-S, Moon S-I (2010) Electrochemical performance of tris(2-chloroethyl) phosphate as a flame-retarding additive for lithium-ion batteries. Met Mater Int 16:587–594. doi: 10.1007/s12540-010-0811-3 CrossRefGoogle Scholar
  117. 117.
    Smart MC, Krause FC, Hwang C, West WC, Soler J, Prakash GKS, Ratnakumar BV (2011) The evaluation of triphenyl phosphate as a flame retardant additive to improve the safety of lithium-ion battery electrolytes. ECS Trans 35:1–11. doi: 10.1149/1.3646164 CrossRefGoogle Scholar
  118. 118.
    Song S-W, Baek S-W (2009) Silane-derived SEI stabilization on thin-film electrodes of nanocrystalline Si for lithium batteries. Electrochem Solid-State Lett 12:A23–A27. doi: 10.1149/1.3028216 CrossRefGoogle Scholar
  119. 119.
    Sun X, Lee HS, Lee S, Yang XQ, McBreen J (1998) A novel lithium battery electrolyte based on lithium fluoride and a tris(pentafluorophenyl) borane anion receptor in DME. Electrochem Solid-State Lett 1:239–240. doi: 10.1149/1.1390698 CrossRefGoogle Scholar
  120. 120.
    Sun X, Lee HS, Yang XQ, McBreen J (1999) Comparative studies of the electrochemical and thermal stability of two types of composite lithium battery electrolytes using boron-based anion receptors. J Electrochem Soc 146:3655–3659. doi: 10.1149/1.1392529 CrossRefGoogle Scholar
  121. 121.
    Tan S, Zhang Z, Li Y, Li Y, Zheng J, Zhou Z, Yang Y (2013) Tris(hexafluoro-iso-propyl)phosphate as an SEI-forming additive on improving the electrochemical performance of the Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material. J Electrochem Soc 160:A285–A292. doi: 10.1149/2.066302jes
  122. 122.
    Tarnopolskiy V, Kalhoff J, Nadherna M, Bresser D, Picard L, Fabre F, Rey M, Passerini S (2013) Beneficial influence of succinic anhydride as electrolyte additive on the self-discharge of 5 V LiNi0.4Mn1.6O4 cathodes. J Power Sources 236:39–46. doi: 10.1016/j.jpowsour.2013.02.030
  123. 123.
    Tasaki K, Kanda K, Kobayashi T, Nakamura S, Ue M (2006) Theoretical studies on the reductive decompositions of solvents and additives for lithium-ion batteries near lithium anodes. J Electrochem Soc 153:A2192–A2197. doi: 10.1149/1.2354460 CrossRefGoogle Scholar
  124. 124.
    Taubert C, Fleischhammer M, Wohlfahrt-Mehrens M, Wietelmann U, Buhrmester T (2010) LiBOB as electrolyte salt or additive for lithium-ion batteries based on LiNi0.8Co0.15Al0.05O2/graphite. J Electrochem Soc 157:A721–A728. doi: 10.1149/1.3374666 CrossRefGoogle Scholar
  125. 125.
    Ufheil J, Baertsch MC, Wuersig A, Novak P (2005) Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries. Electrochim Acta 50:1733–1738. doi: 10.1016/j.electacta.2004.10.061 CrossRefGoogle Scholar
  126. 126.
    Ushirogata K, Sodeyama K, Okuno Y, Tateyama Y (2013) Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery. J Am Chem Soc 135:11967–11974. doi: 10.1021/ja405079s CrossRefGoogle Scholar
  127. 127.
    von Cresce A, Xu K (2011) Electrolyte additive in support of 5 V Li ion chemistry. J Electrochem Soc 158:A337–A342. doi: 10.1149/1.3532047 CrossRefGoogle Scholar
  128. 128.
    Wagner R, Brox S, Kasnatscheew J, Gallus DR, Amereller M, Cekic-Laskovic I, Winter M (2014) Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries. Electrochem Commun 40:80–83. doi: 10.1016/j.elecom.2014.01.004 CrossRefGoogle Scholar
  129. 129.
    Wang C, Nakamura H, Komatsu H, Noguchi H, Yoshio M, Yoshitake H (1998) Suppression of electrochemical decomposition of propylene carbonate (PC) on a graphite anode in PC base electrolyte with catechol carbonate. Denki Kagaku oyobi Kogyo Butsuri Kagaku 66:286–292Google Scholar
  130. 130.
    Wang E, Ofer D, Bowden W, Iltchev N, Moses R, Brandt K (2000) Stability of lithium ion spinel cells III. Improved life of charged cells. J Electrochem Soc 147:4023–4028. doi: 10.1149/1.1394013 CrossRefGoogle Scholar
  131. 131.
    Wang F-M, Yu M-H, Cheng C-S, Pradanawati SA, Lo S-C, Rick J (2013) Phenylenedimaleimide positional isomers used as lithium ion battery electrolyte additives: relating physical and electrochemical characterization to battery performance. J Power Sources 231:18–22. doi: 10.1016/j.jpowsour.2012.12.093 CrossRefGoogle Scholar
  132. 132.
    Wang Q, Sun J, Chen C (2009) Improved thermal stability of graphite electrodes in lithium-ion batteries using 4-isopropyl phenyl diphenyl phosphate as an additive. J Appl Electrochem 39:1105–1110. doi: 10.1007/s10800-008-9765-2 CrossRefGoogle Scholar
  133. 133.
    Wang Q, Sun J, Yao X, Chen C (2005) 4-Isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte. Electrochem Solid-State Lett 8:A467–A470. doi: 10.1149/1.1993389 CrossRefGoogle Scholar
  134. 134.
    Wang W, Wang S, He Y, Yang X, Guo H (2013b) Tris(2,2,2-trifluoroethyl)phosphate (TFP) as flame-retarded additives for Li-ion batteries. Adv Mater Res (Durnten-Zurich, Switz) 787:40–45, 47. doi: 10.4028/www.scientific.net/AMR.787.40
  135. 135.
    Wang Y, Nakamura S, Tasaki K, Balbuena PB (2002) Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive. J Am Chem Soc 124:4408–4421. doi: 10.1021/ja017073i CrossRefGoogle Scholar
  136. 136.
    Weng W, Zhang Z, Redfern PC, Curtiss LA, Amine K (2011) Fused ring and linking groups effect on overcharge protection for lithium-ion batteries. J Power Sources 196:1530–1536. doi: 10.1016/j.jpowsour.2010.08.049 CrossRefGoogle Scholar
  137. 137.
    Weng W, Zhang Z, Schlueter JA, Redfern PC, Curtiss LA, Amine K (2011) Improved synthesis of a highly fluorinated boronic ester as dual functional electrolyte additive for lithium-ion batteries. J Power Sources 196:2171–2178. doi: 10.1016/j.jpowsour.2010.09.110 CrossRefGoogle Scholar
  138. 138.
    West WC, Whitacre JF, Leifer N, Greenbaum S, Smart M, Bugga R, Blanco M, Narayanan SR (2007) Reversible intercalation of fluoride-anion receptor complexes in graphite. J Electrochem Soc 154:A929–A936. doi: 10.1149/1.2759841 CrossRefGoogle Scholar
  139. 139.
    Wrodnigg GH, Besenhard JO, Winter M (1999) Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J Electrochem Soc 146:470–472. doi: 10.1149/1.1391630 CrossRefGoogle Scholar
  140. 140.
    Wrodnigg GH, Wrodnigg TM, Besenhard JO, Winter M (1999) Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochem Commun 1:148–150. doi: 10.1016/s1388-2481(99)00023-5 CrossRefGoogle Scholar
  141. 141.
    Wu B, Pei F, Wu Y, Mao R, Ai X, Yang H, Cao Y (2013) An electrochemically compatible and flame-retardant electrolyte additive for safe lithium ion batteries. J Power Sources 227:106–110. doi: 10.1016/j.jpowsour.2012.11.018 CrossRefGoogle Scholar
  142. 142.
    Wu H-C, Su C-Y, Shieh D-T, Yang M-H, Wu N-L (2006) Enhanced high-temperature cycle life of LiFePO4-based Li-ion batteries by vinylene carbonate as electrolyte additive. Electrochem Solid-State Lett 9:A537–A541. doi: 10.1149/1.2351954
  143. 143.
    Wu X, Li X, Wang Z, Guo H, Yue P, Zhang Y (2013) Improvement on the storage performance of LiMn2O4 with the mixed additives of ethanolamine and heptamethyldisilazane. Appl Surf Sci 268:349–354. doi: 10.1016/j.apsusc.2012.12.095
  144. 144.
    Wu X, Wang Z, Li X, Guo H, Zhang Y, Xiao W (2012) Effect of lithium difluoro(oxalato)borate and heptamethyldisilazane with different concentrations on cycling performance of LiMn2O4. J Power Sources 204:133–138. doi: 10.1016/j.jpowsour.2011.12.012
  145. 145.
    Wu YP, Rahm E, Holze R (2003) Carbon anode materials for lithium ion batteries. J Power Sources 114:228–236. doi: 10.1016/s0378-7753(02)00596-7 CrossRefGoogle Scholar
  146. 146.
    Xia J, Sinha NN, Chen LP, Dahn JR (2014) A comparative study of a family of sulfate electrolyte additives. J Electrochem Soc 161:A264–A274. doi: 10.1149/2.015403jes CrossRefGoogle Scholar
  147. 147.
    Xia YY, Zhou YH, Yoshio M (1997) Capacity fading on cycling of 4 V Li/LiMn2O4 cells. J Electrochem Soc 144:2593–2600. doi: 10.1149/1.1837870
  148. 148.
    Xiang HF, Xu HY, Wang ZZ, Chen CH (2007) Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. J Power Sources 173:562–564. doi: 10.1016/j.jpowsour.2007.05.001 CrossRefGoogle Scholar
  149. 149.
    Xiao L, Ai X, Cao Y, Yang H (2004) Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. Electrochim Acta 49:4189–4196. doi: 10.1016/j.electacta.2004.04.013 CrossRefGoogle Scholar
  150. 150.
    Xie B, Lee HS, Li H, Yang XQ, McBreen J, Chen LQ (2008) New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl)borane as boron based anion receptor for lithium batteries. Electrochem Commun 10:1195–1197. doi: 10.1016/j.elecom.2008.05.043
  151. 151.
    Xin S, Guo Y-G, Wan L-J (2012) Nanocarbon networks for advanced rechargeable lithium batteries. Acc Chem Res 45:1759–1769. doi: 10.1021/ar300094m CrossRefGoogle Scholar
  152. 152.
    Xing LY, Hu M, Tang Q, Wei JP, Qin X, Zhou Z (2012) Improved cyclic performances of LiCoPO4/C cathode materials for high-cell-potential lithium-ion batteries with thiophene as an electrolyte additive. Electrochim Acta 59:172–178. doi: 10.1016/j.electacta.2011.10.054
  153. 153.
    Xu K, Zhang SS, Allen JL, Jow TR (2002) Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. J Electrochem Soc 149:A1079–A1082. doi: 10.1149/1.1490356 CrossRefGoogle Scholar
  154. 154.
    Xu M-Q, Hao L-S, Liu Y-L, Li W-S, Xing L-D, Li B (2011) Experimental and theoretical investigations of dimethylacetamide (DMAc) as electrolyte stabilizing additive for lithium ion batteries. J Phys Chem C 115:6085–6094. doi: 10.1021/jp109562u CrossRefGoogle Scholar
  155. 155.
    Xu M, Liang Y, Li B, Xing L, Wang Y, Li W (2014) Tris(pentafluorophenyl) phosphine: a dual functionality additive for flame-retarding and sacrificial oxidation on LiMn2O4 for lithium ion battery. Mater Chem Phys 143:1048–1054. doi: 10.1016/j.matchemphys.2013.11.003 CrossRefGoogle Scholar
  156. 156.
    Xu M, Liu Y, Li B, Li W, Li X, Hu S (2012) Tris (pentafluorophenyl) phosphine: an electrolyte additive for high voltage Li-ion batteries. Electrochem Commun 18:123–126. doi: 10.1016/j.elecom.2012.02.037 CrossRefGoogle Scholar
  157. 157.
    Xu M, Tsiouvaras N, Garsuch A, Gasteiger HA, Lucht BL (2014) Generation of cathode passivation films via oxidation of lithium bis(oxalato) borate on high voltage spinel (LiNi0.5Mn1.5O4). J Phys Chem C 118:7363–7368. doi: 10.1021/jp501970j
  158. 158.
    Xu MQ, Xing LD, Li WS, Zuo XX, Shu D, Li GL (2008) Application of cyclohexylbenzene as electrolyte additive for overcharge protection of lithium ion battery. J Power Sources 184:427–431. doi: 10.1016/j.jpowsour.2008.03.036 CrossRefGoogle Scholar
  159. 159.
    Xu MQ, Zhou L, Dong YN, Chen YJ, Garsuch A, Lucht BL (2013) Improving the performance of graphite/LiNi/0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis(oxalato) borate (LiBOB). J Electrochem Soc 160:A2005–A2013. doi: 10.1149/2.053311jes
  160. 160.
    Yan G, Li X, Wang Z, Guo H, Xiong X (2014) Beneficial effects of 1-propylphosphonic acid cyclic anhydride as an electrolyte additive on the electrochemical properties of LiNi0.5Mn1.5O4 cathode material. J Power Sources 263:231–238. doi: 10.1016/j.jpowsour.2014.04.060
  161. 161.
    Yang L, Lucht BL (2009) Inhibition of electrolyte oxidation in lithium ion batteries with electrolyte additives. Electrochem Solid-State Lett 12:A229–A231. doi: 10.1149/1.3238486 CrossRefGoogle Scholar
  162. 162.
    Yang L, Markmaitree T, Lucht BL (2011) Inorganic additives for passivation of high voltage cathode materials. J Power Sources 196:2251–2254. doi: 10.1016/j.jpowsour.2010.09.093 CrossRefGoogle Scholar
  163. 163.
    Yang L, Ravdel B, Lucht BL (2010) Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid St 13:A95–A97Google Scholar
  164. 164.
    Yao XL, Xie S, Chen CH, Wang QS, Sun JH, Li YL, Lu SX (2005) Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries. J Power Sources 144:170–175. doi: 10.1016/j.jpowsour.2004.11.042 CrossRefGoogle Scholar
  165. 165.
    Zeng Z, Jiang X, Wu B, Xiao L, Ai X, Yang H, Cao Y (2014) Bis(2,2,2-trifluoroethyl) methylphosphonate: an novel flame-retardant additive for safe lithium-ion battery. Electrochim Acta 129:300–304. doi: 10.1016/j.electacta.2014.02.062 CrossRefGoogle Scholar
  166. 166.
    Zhan C, Lu J, Kropf AJ, Wu TP, Jansen AN, Sun YK, Qiu XP, Amine K (2013) Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nat Commun 4:2437. doi: 10.1038/Ncomms3437 CrossRefGoogle Scholar
  167. 167.
    Zhang J, Wang J, Yang J, NuLi Y (2014) Artificial interface deriving from sacrificial tris(trimethylsilyl)phosphate additive for lithium rich cathode materials. Electrochim Acta 117:99–104. doi: 10.1016/j.electacta.2013.11.024 CrossRefGoogle Scholar
  168. 168.
    Zhang L, Zhang Z, Wu H, Amine K (2011) Novel redox shuttle additive for high-voltage cathode materials. Energy Environ Sci 4:2858–2862. doi: 10.1039/c0ee00733a CrossRefGoogle Scholar
  169. 169.
    Zhang L, Zhang ZC, Redfern PC, Curtiss LA, Amine K (2012) Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energ Environ Sci 5:8204–8207. doi: 10.1039/C2ee21977h CrossRefGoogle Scholar
  170. 170.
    Zhang Q, Qiu C, Fu Y, Ma X (2009) Xylene as a new polymerizable additive for overcharge protection of lithium ion batteries. Chin J Chem 27:1459–1463. doi: 10.1002/cjoc.200990245 CrossRefGoogle Scholar
  171. 171.
    Zhang SS (2006) Aromatic isocyanate as a new type of electrolyte additive for the improved performance of Li-ion batteries. J Power Sources 163:567–572. doi: 10.1016/j.jpowsour.2006.09.046 CrossRefGoogle Scholar
  172. 172.
    Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394. doi: 10.1016/j.jpowsour.2006.07.074 CrossRefGoogle Scholar
  173. 173.
    Zhang SS, Angell CA (1996) A novel electrolyte solvent for rechargeable lithium and lithium-ion batteries. J Electrochem Soc 143:4047–4053. doi: 10.1149/1.1837334 CrossRefGoogle Scholar
  174. 174.
    Zhang SS, Xu K, Jow TR (2003) Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. J Power Sources 113:166–172. doi: 10.1016/S0378-7753(02)00537-2 CrossRefGoogle Scholar
  175. 175.
    Zheng J, Li X, Yu Y, Feng X, Zhao Y (2014) Novel high phosphorus content phosphaphenanthrene-based efficient flame retardant additives for lithium-ion battery. J Therm Anal Calorim 117:319–324. doi: 10.1007/s10973-014-3679-5 CrossRefGoogle Scholar
  176. 176.
    Zhou D, Li W, Tan C, Zuo X, Huang Y (2008) Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries. J Power Sources 184:589–592. doi: 10.1016/j.jpowsour.2008.03.008 CrossRefGoogle Scholar
  177. 177.
    Zhou H, Zhu S, Hibino M, Honma I, Ichihara M (2003) Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater (Weinheim, Ger) 15:2107–2111. doi: 10.1002/adma.200306125 CrossRefGoogle Scholar
  178. 178.
    Zhu Y, Casselman MD, Li Y, Wei A, Abraham DP (2014) Perfluoroalkyl-substituted ethylene carbonates: novel electrolyte additives for high-voltage lithium-ion batteries. J Power Sources 246:184–191. doi: 10.1016/j.jpowsour.2013.07.070 CrossRefGoogle Scholar
  179. 179.
    Zhu Y, Li Y, Bettge M, Abraham DP (2012) Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells. J Electrochem Soc 159:A2109–A2117. doi: 10.1149/2.083212jes CrossRefGoogle Scholar
  180. 180.
    Zhu Y, Li Y, Bettge M, Abraham DP (2013) Electrolyte additive combinations that enhance performance of high-capacity Li1.2Ni0.15Mn0.55Co0 .1O2 -graphite cells. Electrochim Acta 110:191–199. doi: 10.1016/j.electacta.2013.03.102
  181. 181.
    Zhuang GV, Xu K, Jow TR, Ross PN (2004) Study of SEI layer formed on graphite anodes in PC/LiBOB electrolyte using IR spectroscopy. Electrochem Solid St 7:A224–A227. doi: 10.1149/1.1756855 CrossRefGoogle Scholar
  182. 182.
    Zuo X, Wu J, Fan C, Lai K, Liu J, Nan J (2014) Improvement of the thermal stability of LiMn2O4/graphite cells with methylene methanedisulfonate as electrolyte additive. Electrochim Acta 130:778–784. doi: 10.1016/j.electacta.2014.03.106 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Libo Hu
    • 1
  • Adam Tornheim
    • 1
  • Sheng Shui Zhang
    • 2
  • Zhengcheng Zhang
    • 1
  1. 1.Electrochemical Energy Storage Theme, Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontUSA
  2. 2.U.S. Army Research LaboratoryAdelphiUSA

Personalised recommendations