Advertisement

Electrolytes for Lithium and Lithium-Ion Batteries

  • Libo Hu
  • Sheng Shui Zhang
  • Zhengcheng Zhang
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

In this chapter, new trends in the formulation of non-aqueous liquid electrolytes will be discussed. Novel solvents and salts used in Li-ion battery electrolytes are categorized and illustrated, and the progress in understanding the formation mechanism behind the solid-electrolyte interphase (SEI) is discussed.

Keywords

Graphite Anode Lithium Salt Linear Carbonate Vinylene Carbonate Electrolyte Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abouimrane A, Belharouak I, Amine K (2009) Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem Commun 11:1073–1076Google Scholar
  2. 2.
    Abraham KM, Goldman JL, Natwig DL (1982) Characterization of ether electrolytes for rechargeable lithium cells. J Electrochem Soc 129:2404–2409. doi: 10.1149/1.2123556 Google Scholar
  3. 3.
    Abu-Lebdeh Y, Davidson I (2009) High-voltage electrolytes based on adiponitrile for Li-ion batteries. J Electrochem Soc 156:A60–A65. doi: 10.1149/1.3023084 Google Scholar
  4. 4.
    Abu-Lebdeh Y, Davidson I (2009) New electrolytes based on glutaronitrile for high energy/power Li-ion batteries. J Power Sources 189:576–579. doi: 10.1016/j.jpowsour.2008.07.113 Google Scholar
  5. 5.
    Achiha T, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H (2009) Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries. J Electrochem Soc 156:A483–A488. doi: 10.1149/1.3111904 Google Scholar
  6. 6.
    Achiha T, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H (2010) Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries. J Electrochem Soc 157:A707–A712. doi: 10.1149/1.3377084 Google Scholar
  7. 7.
    Amine K, Wang Q, Vissers DR, Zhang Z, Rossi NAA, West R (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun 8:429–433. doi: 10.1016/j.elecom.2005.12.017 Google Scholar
  8. 8.
    Arai J, Matsuo A, Fujisaki T, Ozawa K (2009) A novel high temperature stable lithium salt (Li2B12F12) for lithium ion batteries. J Power Sources 193:851–854. doi: 10.1016/j.jpowsour.2007.04.001 Google Scholar
  9. 9.
    Aravindan V, Gnanaraj J, Madhavi S, Liu H-K (2011) Lithium-ion conducting electrolyte salts for lithium batteries. Chem Eur J 17:14326–14346. doi: 10.1002/chem.201101486 Google Scholar
  10. 10.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. doi: 10.1038/451652a Google Scholar
  11. 11.
    Azeez F, Fedkiw PS (2010) Conductivity of LIBOB-based electrolyte for lithium-ion batteries. J Power Sources 195:7627–7633. doi: 10.1016/j.jpowsour.2010.06.021 Google Scholar
  12. 12.
    Azimi N, Weng W, Takoudis C, Zhang Z (2013) Improved performance of lithium–sulfur battery with fluorinated electrolyte. Electrochem Commun 37:96–99. doi: 10.1016/j.elecom.2013.10.020 Google Scholar
  13. 13.
    Azimi N, Xue Z, Rago ND, Takoudis C, Gordin ML, Song J, Wang D, Zhang Z (2015) Fluorinated electrolytes for Li-S battery: suppressing the self-discharge with an electrolyte containing fluoroether solvent. J Electrochem Soc 162:A64–A68. doi: 10.1149/2.0431501jes Google Scholar
  14. 14.
    Balakrishnan PG, Ramesh R, Prem Kumar T (2006) Safety mechanisms in lithium-ion batteries. J Power Sources 155:401–414. doi: 10.1016/j.jpowsour.2005.12.002 Google Scholar
  15. 15.
    Barthel J, Buestrich R, Gores HJ, Schmidt M, Wuhr M (1997) A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes: 4. Investigations of the electrochemical oxidation of lithium organoborates. J Electrochem Soc 144:3866–3870. doi: 10.1149/1.1838103 Google Scholar
  16. 16.
    Barthel J, Schmidt M, Gores HJ (1998) Lithium bis[5-fluoro-2-olato-1-benzenesulfonato (2-)-O, O’]borate(1-), a new anodically and cathodically stable salt for electrolytes of lithium-ion cells. J Electrochem Soc 145:L17–L20. doi: 10.1149/1.1838265 Google Scholar
  17. 17.
    Barthel J, Wuhr M, Buestrich R, Gores HJ (1995) New class of electrochemically and thermally stable lithium-salts for lithium battery electrolytes: 1. Synthesis and properties of lithium bis[1,2-Benzenediolato(2-)-O, O’]borate. J Electrochem Soc 142:2527–2531. doi: 10.1149/1.2050048 Google Scholar
  18. 18.
    Belov D, Shieh D-T (2012) GBL-based electrolyte for Li-ion battery: thermal and electrochemical performance. J Solid State Electrochem 16:603–615. doi: 10.1007/s10008-011-1391-y Google Scholar
  19. 19.
    Brutti S, Panero S (2013) Recent advances in the development of LiCoPO4 as high voltage cathode material for Li-ion batteries. ACS Sym Ser 1140:67–99. doi: 10.1021/bk-2013-1140.ch004 Google Scholar
  20. 20.
    Chagnes A, Carre B, Willmann P, Dedryvere R, Gonbeau D, Lemordant D (2003) Cycling ability of gamma-butyrolactone-ethylene carbonate based electrolytes. J Electrochem Soc 150:A1255–A1261. doi: 10.1149/1.1597882 Google Scholar
  21. 21.
    Chen R, Zhu L, Wu F, Li L, Zhang R, Chen S (2014) Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries. J Power Sources 245:730–738. doi: 10.1016/j.jpowsour.2013.06.132 Google Scholar
  22. 22.
    Chen Z, Liu J, Amine K (2007) Lithium difluoro(oxalato)borate as salt for lithium-ion batteries. Electrochem Solid-State Lett 10:A45–A47. doi: 10.1149/1.2409743 Google Scholar
  23. 23.
    Chung G-C, Kim H-J, Yu S-I, Jun S-H, Choi J-W, Kim M-H (2000) Origin of graphite exfoliation: an investigation of the important role of solvent cointercalation. J Electrochem Soc 147:4391–4398. doi: 10.1149/1.1394076 Google Scholar
  24. 24.
    Cui X, Zhang H, Li S, Zhao Y, Mao L, Zhao W, Li Y, Ye X (2013) Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and γ-butyrolactone. J Power Sources 240:476–485. doi: 10.1016/j.jpowsour.2013.04.063 Google Scholar
  25. 25.
    Dominey LA, Koch VR, Blakley TJ (1992) Thermally stable lithium salts for polymer electrolytes. Electrochim Acta 37:1551–1554. doi: 10.1016/0013-4686(92)80109-Y Google Scholar
  26. 26.
    Dudley JT, Wilkinson DP, Thomas G, LeVae R, Woo S, Blom H, Horvath C, Juzkow MW, Denis B et al (1991) Conductivity of electrolytes for rechargeable lithium batteries. J Power Sources 35:59–82. doi: 10.1016/0378-7753(91)80004-h Google Scholar
  27. 27.
    Duncan H, Salem N, Abu-Lebdeh Y (2013) Electrolyte formulations based on dinitrile solvents for high voltage Li-ion batteries. J Electrochem Soc 160:A838–A848. doi: 10.1149/2.088306jes Google Scholar
  28. 28.
    Etacheri V, Haik O, Goffer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D (2012) Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 28:965–976. doi: 10.1021/la203712s Google Scholar
  29. 29.
    Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. doi: 10.1039/c1ee01598b Google Scholar
  30. 30.
    Fan LZ, Xing TF, Awan R, Qiu WH (2011) Studies on lithium bis(oxalato)-borate/propylene carbonate-based electrolytes for Li-ion batteries. Ionics 17:491–494. doi: 10.1007/s11581-011-0551-5 Google Scholar
  31. 31.
    Fish D, Khan IM, Smid J (1986) Poly[(methoxyheptaethylene oxide)methylsiloxane]/lithium perchlorate complexes as solvent-free polymer electrolytes for high energy density storage devices. Polym Prepr (Am Chem Soc, Div Polym Chem) 27:325–326Google Scholar
  32. 32.
    Fong R, Von Sacken U, Dahn JR (1990) Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc 137:2009–2013. doi: 10.1149/1.2086855 Google Scholar
  33. 33.
    Foster DL, Wolfenstine J, Behl WK (1999) Tertiary polyamines as additives to lithium-ion battery electrolytes. Proc of Electrochem Soc 98–16:391–397Google Scholar
  34. 34.
    Gachot G, Grugeon S, Armand M, Pilard S, Guenot P, Tarascon J-M, Laruelle S (2008) Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. J Power Sources 178:409–421. doi: 10.1016/j.jpowsour.2007.11.110 Google Scholar
  35. 35.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193–2203. doi: 10.1021/jz1005384 Google Scholar
  36. 36.
    Gmitter AJ, Plitz I, Amatucci GG (2012) High concentration dinitrile, 3-alkoxypropionitrile, and linear carbonate electrolytes enabled by vinylene and monofluoroethylene carbonate additives. J Electrochem Soc 159:A370–A379. doi: 10.1149/2.016204jes Google Scholar
  37. 37.
    Goldman JL, Long BR, Gewirth AA, Nuzzo RG (2011) Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: models for high energy density lithium-ion battery anodes. Adv Funct Mater 21:2412–2422. doi: 10.1002/adfm.201002487 Google Scholar
  38. 38.
    Gordin M, Dai F, Chen S, Xu T, Song J, Tang D, Azimi N, Zhang Z, Wang D (2014) Bis(2,2,2-trifluoroethyl) ether as an electrolyte co-solvent for mitigating self-discharge in lithium-sulfur batteries. ACS Appl Mater Interfaces 6(11):8006–8010. doi: 10.1021/am501665s Google Scholar
  39. 39.
    Guibert S, Cariou M, Simonet J (1988) Research of new solvents for lithium batteries: II. Behavior of aliphatic nitriles substituted by electron donating groups. Bull Soc Chim Fr 924–927Google Scholar
  40. 40.
    Guidotti RA, Reinhardt FW (2001) The performance of manganese oxides as a function of temperature in several molten-salt systems. ITE Lett Batteries New Technol Med 2:26–32Google Scholar
  41. 41.
    Han H, Guo J, Zhang D, Feng S, Feng W, Nie J, Zhou Z (2011) Lithium (fluorosulfonyl)(nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells. Electrochem Commun 13:265–268. doi: 10.1016/j.elecom.2010.12.030 Google Scholar
  42. 42.
    Han S-D, Allen JL, Boyle PD, Henderson WA (2012) Delving into the properties and solution structure of nitrile-lithium difluoro(oxalato)borate (LiDFOB) electrolytes for Li-ion batteries. ECS Trans 41:47–51. doi: 10.1149/1.4717962 Google Scholar
  43. 43.
    Handa M, Suzuki M, Suzuki J, Kanematsu H, Sasaki Y (1999) A new lithium salt with a chelate complex of phosphorus for lithium battery electrolytes. Electrochem Solid St 2:60–62. doi: 10.1149/1.1390734 Google Scholar
  44. 44.
    He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695. doi: 10.1039/c2jm14305d Google Scholar
  45. 45.
    Hu L, Zhang Z, Amine K (2013) Fluorinated electrolytes for Li-ion battery: an FEC-based electrolyte for high voltage LiNi0.5Mn1.5O4/graphite couple. Electrochem Commun 35:76–79. doi: 10.1016/j.elecom.2013.08.007 Google Scholar
  46. 46.
    Huang J-Y, Liu X-J, Kang X-l YuZ-X, Xu T-T, Qiu W-H (2009) Study on γ-butyrolactone for LiBOB-based electrolytes. J Power Sources 189:458–461. doi: 10.1016/j.jpowsour.2008.12.088 Google Scholar
  47. 47.
    Huber B, Linder T, Hormann K, Froemling T, Sundermeyer J, Roling B (2012) Synthesis of novel lithium salts containing pentafluorophenylamido-based anions and investigation of their thermal and electrochemical properties. Z Phys Chem (Muenchen, Ger) 226:377–390. doi: 10.1524/zpch.2012.0220 Google Scholar
  48. 48.
    Inaba M, Kawatate Y, Funabiki A, Jeong SK, Abe T, Ogumi Z (1999) STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution. Electrochim Acta 45:99–105. doi: 10.1016/S0013-4686(99)00196-6 Google Scholar
  49. 49.
    Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699. doi: 10.1039/c0ee00699h Google Scholar
  50. 50.
    Jung SC, Choi JW, Han Y-K (2012) Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale. Nano Lett 12:5342–5347. doi: 10.1021/nl3027197 Google Scholar
  51. 51.
    Kamamura K, Umegaki T, Shiraishi S, Ohashi M, Takehara Z (2002) Electrochemical behavior of Al current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(C4F9SO2)(CF3SO2)N. J Electrochem Soc 149:A185–A194. doi: 10.1149/1.1433471 Google Scholar
  52. 52.
    Kasnatscheew J, Schmitz RW, Wagner R, Winter M, Schmitz R (2013) Fluoroethylene carbonate as an additive for γ-butyrolactone based electrolytes. J Electrochem Soc 160:A1369–A1374. doi: 10.1149/2.009309jes Google Scholar
  53. 53.
    Kinoshita S-C, Kotato M, Sakata Y, Ue M, Watanabe Y, Morimoto H, Tobishima S-I (2008) Effects of cyclic carbonates as additives to γ-butyrolactone electrolytes for rechargeable lithium cells. J Power Sources 183:755–760. doi: 10.1016/j.jpowsour.2008.05.035 Google Scholar
  54. 54.
    Koch VR, Young JH (1978) The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J Electrochem Soc 125:1371–1377. doi: 10.1149/1.2131680 Google Scholar
  55. 55.
    Krause LJ, Lamanna W, Summerfield J, Engle M, Korba G, Loch R, Atanasoski R (1997) Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides: new lithium salts for lithium-ion cells. J Power Sources 68:320–325. doi: 10.1016/S0378-7753(97)02517-2 Google Scholar
  56. 56.
    Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better… a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939. doi: 10.1002/aenm.201200068 Google Scholar
  57. 57.
    Kusachi Y, Dong J, Zhang Z, Amine K (2011) Tri(ethylene glycol)-substituted trimethylsilane/lithium bis(oxalate)borate electrolyte for LiMn2O4/graphite system. J Power Sources 196:8301–8306. doi: 10.1016/j.jpowsour.2011.06.033 Google Scholar
  58. 58.
    Li S, Zhao W, Cui X, Zhang H, Wang X, Zhong W, Feng H, Liu H (2014) Lithium difluoro(sulfato)borate as a novel electrolyte salt for high-temperature lithium-ion batteries. Electrochim Acta 129:327–333. doi: 10.1016/j.electacta.2014.02.090 Google Scholar
  59. 59.
    Li S, Zhao W, Zhou Z, Cui X, Shang Z, Liu H, Zhang D (2014) Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries. ACS Appl Mater Interfaces 6:4920–4926. doi: 10.1021/am405973x Google Scholar
  60. 60.
    Liu J, Chen Z, Busking S, Amine K (2007) Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries. Electrochem Commun 9:475–479. doi: 10.1016/j.elecom.2006.10.022 Google Scholar
  61. 61.
    Lu DS, Xu MQ, Zhou L, Garsuch A, Lucht BL (2013) Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J Electrochem Soc 160:A3138–A3143. doi: 10.1149/2.022305jes Google Scholar
  62. 62.
    Lux SF, Lucas IT, Pollak E, Passerini S, Winter M, Kostecki R (2012) The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem Commun 14:47–50. doi: 10.1016/j.elecom.2011.10.026 Google Scholar
  63. 63.
    Mao L, Li B, Cui X, Zhao Y, Xu X, Shi X, Li S, Li F (2012) Electrochemical performance of electrolytes based upon lithium bis(oxalate)borate and sulfolane/alkyl sulfite mixtures for high temperature lithium-ion batteries. Electrochim Acta 79:197–201. doi: 10.1016/j.electacta.2012.06.102 Google Scholar
  64. 64.
    Mao LP, Li BC, Cui XL, Zhao YY, Xu XL, Shi XM, Li SY, Li FQ (2012) Electrochemical performance of electrolytes based upon lithium bis(oxalate)borate and sulfolane/alkyl sulfite mixtures for high temperature lithium-ion batteries. Electrochim Acta 79:197–201. doi: 10.1016/j.electacta.2012.06.102 Google Scholar
  65. 65.
    Matsuda Y, Morita M, Yamashita T (1984) Conductivity of the lithium tetrafluoroborate (LiBF4) mixed ether electrolytes for secondary lithium cells. J Electrochem Soc 131:2821–2827. doi: 10.1149/1.2115416 Google Scholar
  66. 66.
    Matsumoto K, Nakahara K, Inoue K, Iwasa S, Nakano K, Kaneko S, Ishikawa H, Utsugi K, Yuge R (2014) Performance improvement of Li ion battery with non-flammable TMP mixed electrolyte by optimization of lithium salt concentration and SEI preformation technique on graphite anode. J Electrochem Soc 161:A831–A834. doi: 10.1149/2.091405jes Google Scholar
  67. 67.
    McMillan R, Slegr H, Shu ZX, Wang WD (1999) Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J Power Sources 81:20–26. doi: 10.1016/S0378-7753(98)00201-8 Google Scholar
  68. 68.
    McOwen DW, Seo DM, Borodin O, Vatamanu J, Boyle PD, Henderson WA (2014) Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energ Environ Sci 7:416–426. doi: 10.1039/c3ee42351d Google Scholar
  69. 69.
    Morita M, Shibata T, Yoshimoto N, Ishikawa M (2002) Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim Acta 47:2787–2793. doi: 10.1016/S0013-4686(02)00164-0 Google Scholar
  70. 70.
    Morita M, Okada Y, Matsuda Y (1987) Lithium cycling efficiency on the aluminum substrate in blended sulfolane-ether systems. J Electrochem Soc 134(11):2665–2669. doi: 10.1149/1.2100267 Google Scholar
  71. 71.
    Nakai H, Kubota T, Kita A, Kawashima A (2011) Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes. J Electrochem Soc 158:A798–A801. doi: 10.1149/1.3589300 Google Scholar
  72. 72.
    Neuhold S, Schroeder DJ, Vaughey JT (2012) Effect of surface preparation and R-group size on the stabilization of lithium metal anodes with silanes. J Power Sources 206:295–300. doi: 10.1016/j.jpowsour.2012.01.127 Google Scholar
  73. 73.
    Neuhold S, Vaughey JT, Grogger C, Lopez CM (2014) Enhancement in cycle life of metallic lithium electrodes protected with Fp-silanes. J Power Sources 254:241–248. doi: 10.1016/j.jpowsour.2013.12.057 Google Scholar
  74. 74.
    Nishikawa D, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H (2013) Thermal and oxidation stability of organo-fluorine compound-mixed electrolyte solutions for lithium ion batteries. J Power Sources 243:573–580. doi: 10.1016/j.jpowsour.2013.06.034 Google Scholar
  75. 75.
    Naoi K, Mori M, Naruoka Y, Lamanna WM, Atanasoski R (1999) The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis(perfluoroethylsulfonylimide) [LiN(C2F5SO2)2]. J Electrochem Soc 146:462–469. doi: 10.1149/1.1391627 Google Scholar
  76. 76.
    Oh B, Ofer D, Rempel J, Pullen A, Sriramulu S, Barnett B (2010) New and improved nonaqueous electrolyte components fo Li-ion batteries. In: Proceedings of power sources conference 44th, pp 170–173Google Scholar
  77. 77.
    Oh B, Ofer D, Singh SK, Sriramulu S, Barnett B (2008) Nitrile-based electrolytes for lithium-ion cells. Proceedings of power sources conference 43rd, pp 109–112Google Scholar
  78. 78.
    Ohmi N, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H (2013) Effect of organo-fluorine compounds on the thermal stability and electrochemical properties of electrolyte solutions for lithium-ion batteries. J Power Sources 221:6–13. doi: 10.1016/j.jpowsour.2012.07.121 Google Scholar
  79. 79.
    Ossola F, Pistoia G, Seeber R, Ugo P (1988) Oxidation potentials of electrolyte solutions for lithium cells. Electrochim Acta 33:47–50. doi: 10.1016/0013-4686(88)80030-6 Google Scholar
  80. 80.
    Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141. doi: 10.1039/b919877f Google Scholar
  81. 81.
    Ping P, Wang Q, Sun J, Feng X, Chen C (2011) Effect of sulfites on the performance of LiBOB/γ-butyrolactone electrolytes. J Power Sources 196:776–783. doi: 10.1016/j.jpowsour.2010.07.064 Google Scholar
  82. 82.
    Ratnakumar BV, Smart MC, Huang CK, Perrone D, Surampudi S, Greenbaum SG (2000) Lithium ion batteries for Mars exploration missions. Electrochim Acta 45:1513–1517. doi: 10.1016/s0013-4686(99)00367-7 Google Scholar
  83. 83.
    Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev (Washington, DC, US) 113:5364–5457. doi: 10.1021/cr3001884 Google Scholar
  84. 84.
    Rollins HW, Harrup MK, Dufek EJ, Jamison DK, Sazhin SV, Gering KL, Daubaras DL (2014) Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes. J Power Sources 263:66–74. doi: 10.1016/j.jpowsour.2014.04.015 Google Scholar
  85. 85.
    Rossi NAA, West R (2009) Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58:267–272. doi: 10.1002/pi.2523 Google Scholar
  86. 86.
    Rupich MW, Pitts L, Abraham KM (1982) Characterization of reactions and products of the discharge and forced over-discharge of Li/SO2 cells. J Electrochem Soc 129:1857–1861. doi: 10.1149/1.2124314 Google Scholar
  87. 87.
    Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451Google Scholar
  88. 88.
    Scheers J, Lim D-H, Kim J-K, Paillard E, Henderson WA, Johansson P, Ahn J-H, Jacobsson P (2014) All fluorine-free lithium battery electrolytes. J Power Sources 251:451–458. doi: 10.1016/j.jpowsour.2013.11.042 Google Scholar
  89. 89.
    Schroeder G, Gierczyk B, Waszak D, Kopczyk M, Walkowiak M (2006) Vinyl tris-2-methoxyethoxy silane: a new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochem Commun 8:523–527. doi: 10.1016/j.elecom.2006.01.021 Google Scholar
  90. 90.
    Schroeder G, Gierczyk B, Waszak D, Walkowiak M (2006) Impact of ethyl tris-2-methoxyethoxy silane on the passivation of graphite electrode in Li-ion cells with PC-based electrolyte. Electrochem Commun 8:1583–1587. doi: 10.1016/j.elecom.2006.07.030 Google Scholar
  91. 91.
    Shao N, Sun XG, Dai S, Jiang DE (2011) Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. J Phys Chem B 115:12120–12125. doi: 10.1021/jp204401t Google Scholar
  92. 92.
    Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid-State Lett 4:A42–A44. doi: 10.1149/1.1353158 Google Scholar
  93. 93.
    Smart MC, Ratnakumar BV, Ryan-Mowrey VS, Surampudi S, Prakash GKS, Hub J, Cheung I (2003) Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes. J Power Sources 119:359–367. doi: 10.1016/S0378-7753(03)00266-0 Google Scholar
  94. 94.
    Smart MC, Ratnakumar BV, Surampudi S (2002) Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. J Electrochem Soc 149:A361–A370. doi: 10.1149/1.1453407 Google Scholar
  95. 95.
    Smith KA, Smart MC, Prakash GKS, Ratnakumar BV (2008) Electrolytes containing fluorinated ester co-solvents for low-temperature Li-ion cells. ECS Trans 11:91–98. doi: 10.1149/1.2938911 Google Scholar
  96. 96.
    Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197. doi: 10.1016/s0378-7753(98)00193-1 Google Scholar
  97. 97.
    Sun XG, Angell CA (2004) New sulfone electrolytes: part II. Cyclo alkyl group containing sulfones. Solid State Ionics 175:257–260. doi: 10.1016/j.ssi.2003.11.035 Google Scholar
  98. 98.
    Sun XG, Angell CA (2005) New sulfone electrolytes for rechargeable lithium batteries: part I. Oligoether-containing sulfones. Electrochem Commun 7:261–266. doi: 10.1016/j.elecom.2005.01.010 Google Scholar
  99. 99.
    Sun XG, Angell CA (2009) Doped sulfone electrolytes for high voltage Li-ion cell applications. Electrochem Commun 11:1418–1421. doi: 10.1016/j.elecom.2007.05.020 Google Scholar
  100. 100.
    Takami N, Ohsaki T, Hasebe H, Yamamoto M (2002) Laminated thin Li-ion batteries using a liquid electrolyte. J Electrochem Soc 149:A9–A12. doi: 10.1149/1.1420704 Google Scholar
  101. 101.
    Takami N, Sekino M, Ohsaki T, Kanda M, Yamamoto M (2001) New thin lithium-ion batteries using a liquid electrolyte with thermal stability. J Power Sources 97–98:677–680. doi: 10.1016/S0378-7753(01)00699-1 Google Scholar
  102. 102.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi: 10.1038/35104644 Google Scholar
  103. 103.
    Tobishima S, Yamaki J, Yamaji A, Okada T (1984) Dialkoxyethane-propylene carbonate mixed electrolytes for lithium secondary batteries. J Power Sources 13:261–271. doi: 10.1016/0378-7753(84)80034-8 Google Scholar
  104. 104.
    Ufheil J, Baertsch MC, Wuersig A, Novak P (2005) Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries. Electrochim Acta 50:1733–1738. doi: 10.1016/j.electacta.2004.10.061 Google Scholar
  105. 105.
    Wang Q, Pechy P, Zakeeruddin SM, Exnar I, Graetzel M (2005) Novel electrolytes for Li4Ti5O12-based high power lithium ion batteries with nitrile solvents. J Power Sources 146:813–816. doi: 10.1016/j.jpowsour.2005.03.157 Google Scholar
  106. 106.
    Wang XJ, Lee HS, Li H, Yang XQ, Huang XJ (2010) The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries. Electrochem Commun 12:386–389. doi: 10.1016/j.elecom.2007.12.041 Google Scholar
  107. 107.
    Watanabe M, Nagano S, Sanui K, Ogata N (1987) Structure-conductivity relationship in polymer electrolytes formed by network polymers from poly[dimethylsiloxane-g-poly(ethylene oxide)] and lithium perchlorate. J Power Sources 20:327–332. doi: 10.1016/0378-7753(87)80131-3 Google Scholar
  108. 108.
    Watanabe Y, Kinoshita S-I, Wada S, Hoshino K, Morimoto H, Tobishima S-I (2008) Electrochemical properties and lithium ion solvation behavior of sulfone–ester mixed electrolytes for high-voltage rechargeable lithium cells. J Power Sources 179:770–779. doi: 10.1016/j.jpowsour.2008.01.006 Google Scholar
  109. 109.
    Wu F, Zhu Q, Li L, Chen R, Chen S (2013) A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalato)borate for lithium batteries. J Mater Chem A 1:3659–3666. doi: 10.1039/c3ta01182h Google Scholar
  110. 110.
    Wu F, Zhu QZ, Li L, Chen RJ, Chen S (2013) A diisocyanate/sulfone binary electrolyte based on lithium difluoro(oxalate)borate for lithium batteries. J Mater Chem A 1:3659–3666. doi: 10.1039/C3TA01182H Google Scholar
  111. 111.
    Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429. doi: 10.1016/j.nantod.2012.08.004 Google Scholar
  112. 112.
    Wu HB, Chen JS, Hng HH, Wen Lou X (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542. doi: 10.1039/c2nr11966h Google Scholar
  113. 113.
    Xia J, Sinha NN, Chen LP, Dahn JR (2014) A comparative study of a family of sulfate electrolyte additives. J Electrochem Soc 161:A264–A274. doi: 10.1149/2.015403jes Google Scholar
  114. 114.
    Xiang J, Wu F, Chen RJ, Li L, Yu HG (2013) High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. J Power Sources 233:115–120. doi: 10.1016/j.jpowsour.2013.01.123 Google Scholar
  115. 115.
    Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R 73:51–65. doi: 10.1016/j.mser.2012.05.003 Google Scholar
  116. 116.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417. doi: 10.1021/cr030203g Google Scholar
  117. 117.
    Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503–11618. doi: 10.1021/cr500003w Google Scholar
  118. 118.
    Xu K (2008) Tailoring electrolyte composition for LiBOB. J Electrochem Soc 155:A733–A738. doi: 10.1149/1.2961055 Google Scholar
  119. 119.
    Xu K, Angell CA (2002) Sulfone-based electrolytes for lithium-ion batteries. J Electrochem Soc 149:L7–L7. doi: 10.1149/1.1496104 Google Scholar
  120. 120.
    Xu K, von Cresce A (2011) Interfacing electrolytes with electrodes in Li ion batteries. J Mater Chem 21:9849–9864. doi: 10.1039/C0JM04309E Google Scholar
  121. 121.
    Xu K, Zhang S, Poese BA, Jow TR (2002) Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate. Electrochem Solid-State Lett 5:A259–A262. doi: 10.1149/1.1510322 Google Scholar
  122. 122.
    Xu M, Tsiouvaras N, Garsuch A, Gasteiger HA, Lucht BL (2014) Generation of cathode passivation films via oxidation of lithium bis(oxalato) borate on high voltage spinel (LiNi0.5Mn1.5O4). J Phys Chem C 118:7363–7368. doi: 10.1021/jp501970j Google Scholar
  123. 123.
    Xu M, Xiao A, Li W, Lucht BL (2009) Investigation of lithium tetrafluorooxalatophosphate as a lithium-ion battery electrolyte. Electrochem Solid-State Lett 12:A155–A158. doi: 10.1149/1.3134462 Google Scholar
  124. 124.
    Xu M, Xiao A, Li W, Lucht BL (2010) Investigation of lithium tetrafluorooxalatophosphate [LiPF4(C2O4)] as a lithium-ion battery electrolyte for elevated temperature performance. J Electrochem Soc 157:A115–A120. doi: 10.1149/1.3258290 Google Scholar
  125. 125.
    Xu M, Xiao A, Yang L, Lucht BL (2009) Novel electrolyte for lithium ion batteries: lithium tetrafluorooxalatophosphate (LiPF4C2O4). ECS Trans 16:3–11. doi: 10.1149/1.3123122 Google Scholar
  126. 126.
    Xu MQ, Zhou L, Dong YN, Chen YJ, Garsuch A, Lucht BL (2013) Improving the performance of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature with added lithium bis(oxalato) borate (LiBOB). J Electrochem Soc 160:A2005–A2013. doi: 10.1149/2.053311jes Google Scholar
  127. 127.
    Xu W, Angell CA (2001) LiBOB and its derivatives: weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Solid-State Lett 4:E1–E4. doi: 10.1149/1.1344281 Google Scholar
  128. 128.
    Yamada Y, Furukawa K, Sodeyama K, Kikuchi K, Yaegashi M, Tateyama Y, Yamada A (2014) Unusual stability of acetonitrile-based superconcentratede electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc 136:5039–5046. doi: 10.1021/ja412807w Google Scholar
  129. 129.
    Yang L, Ravdel B, Lucht BL (2010) Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett 13:A95–A97. doi: 10.1149/1.3428515 Google Scholar
  130. 130.
    Yazami R, Martinent A (2005) Fluorinated anions and electrode/electrolyte stability in lithium batteries. Elsevier, pp 173–194. doi: 10.1016/b978-008044472-7/50036-7
  131. 131.
    Yong T, Wang J, Mai Y, Zhao X, Luo H, Zhang L (2014) Organosilicon compounds containing nitrile and oligo(ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries. J Power Sources 254:29–32. doi: 10.1016/j.jpowsour.2013.12.087 Google Scholar
  132. 132.
    Zhang L, Lyons L, Newhouse J, Zhang Z, Straughan M, Chen Z, Amine K, Hamers RJ, West R (2010) Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries. J Mater Chem 20:8224–8226. doi: 10.1039/c0jm01596b Google Scholar
  133. 133.
    Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394. doi: 10.1016/j.jpowsour.2006.07.074 Google Scholar
  134. 134.
    Zhang SS (2006) An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8:1423–1428. doi: 10.1016/j.elecom.2006.06.016 Google Scholar
  135. 135.
    Zhang SS (2007) Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte. J Power Sources 163:713–718. doi: 10.1016/j.jpowsour.2006.07.040 Google Scholar
  136. 136.
    Zhang SS (2007) Lithium oxalyldifluoroborate as a salt for the improved electrolytes of Li-ion batteries. ECS Trans 3:59–68. doi: 10.1149/1.2793577 Google Scholar
  137. 137.
    Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24. doi: 10.1016/j.jpowsour.2010.07.020 Google Scholar
  138. 138.
    Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern PC, Curtiss LA, Amine K (2013) Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energ Environ Sci 6:1806–1810. doi: 10.1039/C3EE24414H Google Scholar
  139. 139.
    Zhang Z, Lu J, Assary RS, Du P, Wang H-H, Sun Y-K, Qin Y, Lau KC, Greeley J, Redfern PC, Iddir H, Curtiss LA, Amine K (2011) Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J Phys Chem C 115:25535–25542. doi: 10.1021/jp2087412 Google Scholar
  140. 140.
    Zhang Z, Dong J, West R, Amine K (2009) Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries. J Power Sources 195(18):6062–6068. doi: 10.1016/j.jpowsour.2007.12.067 Google Scholar
  141. 141.
    Zheng M-S, Chen J-J, Dong Q-F (2012) The research of electrolyte on lithium/sulfur battery. Adv Mater Res (Durnten-Zurich, Switz) 476–478:1763–1766. doi: 10.4028/www.scientific.net/AMR.476-478.1763
  142. 142.
    Zhou L, Lucht BL (2012) Performance of lithium tetrafluorooxalatophosphate (LiFOP) electrolyte with propylene carbonate (PC). J Power Sources 205:439–448. doi: 10.1016/j.jpowsour.2012.01.067 Google Scholar
  143. 143.
    Zhu Y, Li Y, Bettge M, Abraham DP (2013) Electrolyte additive combinations that enhance performance of high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-graphite cells. Electrochim Acta 110:191–199. doi: 10.1016/j.electacta.2013.03.102 Google Scholar
  144. 144.
    Zinigrad E, Larush-Asraf L, Salitra G, Sprecher M, Aurbach D (2007) On the thermal behavior of Li bis(oxalato)borate LiBOB. Thermochim Acta 457:64–69. doi: 10.1016/j.tca.2007.03.00 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Electrochemical Energy Storage Theme, Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontUSA
  2. 2.U.S. Army Research LaboratoryAdelphiUSA

Personalised recommendations