Advertisement

Carbonaceous Anode Materials

  • Yoong Ahm Kim
  • Yong Jung Kim
  • Morinobu Endo
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The use of the engineered carbon materials as an anode allowed the lithium ion batteries (LIBs) to achieve a large advance in the last decade. The performance of LIBs strongly depends on the microtexture of the carbon materials. Due to the contribution of the carbon materials, the electrochemical performance of the LIBs has been improved almost double for the last 10 years. Thus, intensive work has focused on the identification of key factors of carbon materials that can improve anode performance. Recently, there is the active work on the development of nanosized carbon materials (e.g., carbon nanotube and graphene). In this chapter, we describe the correlation between the microstructural parameters and anode performance of conventional and novel types of carbon materials for Li ion batteries by connecting with the market demand and the trends in Li ion secondary batteries.

Keywords

Carbon Material Anode Material Boron Carbide Graphitic Carbon Reversible Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics 69:173–183CrossRefGoogle Scholar
  2. 2.
    Delhaes P, Manceau KP, Guerard D (1980) Physical properties of first and second stage lithium graphite intercalation compounds. Synth Met 2:277–284CrossRefGoogle Scholar
  3. 3.
    Kang K, Meng YS, Breger J et al (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRefGoogle Scholar
  4. 4.
    Takada K, Ohta N, Zhang L et al (2008) Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics 179:1333–1337CrossRefGoogle Scholar
  5. 5.
    Wen Z, Huang S, Yang X et al (2008) High rate electrode materials for lithium ion batteries. Solid State Ionics 179:1800–1805CrossRefGoogle Scholar
  6. 6.
    Endo M, Kim C, Nishimura K (2000) Recent development of carbon materials for Li ion batteries. Carbon 38:183–197CrossRefGoogle Scholar
  7. 7.
    Oberlin A (1989) TEM studies of carbonization and graphitization. In: Thrower PA (ed) Chemistry and physics of carbon, vol 22. Marcel Dekker, New York, pp 1–143Google Scholar
  8. 8.
    Imanishi N, Takeda Y, Yamamoto O (1998) Development of the carbon anode in lithium ion batteries. In: Wakihara M (ed) Lithium ion batteries: fundamentals and performance. Wiley-VCH, New York, pp 1–98Google Scholar
  9. 9.
    Edwards IAS (1997) Structure in carbons and carbon forms. In: Marsh H (ed) Introduction to carbon science. Butterworth-Heinemann, Portland, pp 1–36Google Scholar
  10. 10.
    Sato K, Noguchi M, Demachi A et al (1994) A mechanism of lithium storage in disordered carbons. Science 264:556–558CrossRefGoogle Scholar
  11. 11.
    Fujimoto H, Mabuchi A, Tokumitsu K (1995) Irreversible capacity of lithium secondary battery using meso-carbon micro beads as anode material. J Power Sour 54:440–443CrossRefGoogle Scholar
  12. 12.
    Dahn JR, Zheng T, Liu Y et al (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593CrossRefGoogle Scholar
  13. 13.
    Yazami R, Munshi MZA (1995) Novel anodes for solid state batteries. In: Munshi MZA (ed) Handbook of solid state batteries and capacitors. World Scientific, Singapore, pp 425–460CrossRefGoogle Scholar
  14. 14.
    Zhou P, Papanek P, Lee R et al (1997) Local structure and vibrational spectroscopy of disordered carbon for Li batteries: neutron scattering studies. J Electrochem Soc 144:1744–1750CrossRefGoogle Scholar
  15. 15.
    Endo M, Nishimura Y, Takahashi T et al (1996) Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery. J Phys Chem Solids 57:725–728CrossRefGoogle Scholar
  16. 16.
    Endo M, Kim C, Hiraoka T et al (1998) Li storage behavior in polyparaphenylene (PPP)-based disordered carbon as a negative electrode for Li ion batteries. Mol Cryst Liq Cryst 310:353–358CrossRefGoogle Scholar
  17. 17.
    Mabuchi A, Tokumitsu K, Fujimoto H (1995) Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures. J Electrochem Soc 142:1041–1046CrossRefGoogle Scholar
  18. 18.
    Zheng T, Zhong Q, Dahn JR (1995) High-capacity carbons prepared from phenolic resin for anodes of lithium-ion batteries. J Electrochem Soc 142:L211–L214CrossRefGoogle Scholar
  19. 19.
    Matsumura Y, Wang S, Mondori J (1995) Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 33:1457–1462CrossRefGoogle Scholar
  20. 20.
    Kovacic P, Kyriakis A (1963) Polymerization of benzene to p-polyphenyl by aluminum chloride-cupric chloride. J Am Chem Soc 85:454–458CrossRefGoogle Scholar
  21. 21.
    Yamamoto T, Hayashi Y, Yamamoto A (1978) A novel type of polycondensation utilizing transition metal-catalyzed C–C coupling I: preparation of thermostable polyphenylene type polymers. Bull Chem Soc Japan 51:2091–2097CrossRefGoogle Scholar
  22. 22.
    Villar-odil S, Suarez-garcia F, Paredes JI et al (2005) Activated carbon materials of uniform porosity form polyaramid fibers. Chem Mater 17:5893–5908CrossRefGoogle Scholar
  23. 23.
    Ko KS, Park CW, Yoon SH et al (2001) Preparation of Kevlar-derived carbon fibers and their anodic performances in Li secondary batteries. Carbon 39:1619–1625CrossRefGoogle Scholar
  24. 24.
    Zheng T, Xing W, Dahn JR (1996) Carbons prepared from coals for anodes of lithium-ion cells. Carbon 34:1501–1507CrossRefGoogle Scholar
  25. 25.
    Kim WS, Chung KI, Lee CB et al (2002) Studies on heat-treated MPCF anodes in Li ion batteries. Microchem J 72:185–192CrossRefGoogle Scholar
  26. 26.
    Takami N, Satoh A, Hara M et al (1995) Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes. J Electrochem Soc 142:2564–2571CrossRefGoogle Scholar
  27. 27.
    Tatsumi K, Iwashita N, Sakaebe H et al (1995) The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. J Electrochem Soc 142:716–720CrossRefGoogle Scholar
  28. 28.
    Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J Electrochem Soc 140:2490–2498CrossRefGoogle Scholar
  29. 29.
    Yoshito I (2006) Carbon anode material for lithium-ion rechargeable battery. Tanso 225:382–390Google Scholar
  30. 30.
    Ishii Y, Fujita A, Nishida T et al (2001) High-performance anode material for lithium-ion rechargeable battery. Hitachi Chem Tech Rep 36:27–32Google Scholar
  31. 31.
    Ishii Y, Nishida T, Suda S et al (2006) Anode material for high energy density rechargeable lithium-ion battery. Hitachi Chem Tech Rep 47:29–32Google Scholar
  32. 32.
    Lowell CE (1967) Solid solution of boron in graphite. J Am Ceram Soc 50:142–144CrossRefGoogle Scholar
  33. 33.
    Kouvetakis J, Kaner RB, Sattler ML et al (1986) A novel graphite-like material of composition BC3, and nitrogen–carbon graphites. J Chem Soc Chem Commun 24:1758–1759CrossRefGoogle Scholar
  34. 34.
    Marchand A (1971) Electronic properties of doped carbons. In: Walker PL (ed) Chemistry and physics of carbon, vol 7. Marcel Dekker, New York, pp 155–191Google Scholar
  35. 35.
    Nakajima T, Koh K, Takashima M (1998) Electrochemical behavior of carbon alloy CxN prepared by CVD using a nickel catalyst. Electrochim Acta 43:883–891CrossRefGoogle Scholar
  36. 36.
    Nishimura Y, Yakahashi T, Tamaki T et al (1996) Anode performance of B-doped mesophase pitch-based carbon fibers in lithium ion secondary batteries. Tanso 172:89–94CrossRefGoogle Scholar
  37. 37.
    Endo M, Hayashi T, Hong SH et al (2001) Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. J Appl Phys 90:5670–5674CrossRefGoogle Scholar
  38. 38.
    Endo M, Oshida K, Kobori K et al (1995) Evidence for glide and rotation defects observed in well-ordered graphite fibers. J Mater Res 10:1461–1468CrossRefGoogle Scholar
  39. 39.
    Hach CT, Jones LE, Crossland C et al (1999) An investigation of vapor deposited boron rich carbon-a novel graphite-like material–part I: the structure of BCx (C6B) thin films. Carbon 37:221–230CrossRefGoogle Scholar
  40. 40.
    Matthews MJ, Dresselhaus MS, Dresselhaus G et al (1996) Magnetic alignment of mesophase pitch-based carbon fibers. Appl Phys Lett 69:430–432CrossRefGoogle Scholar
  41. 41.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  42. 42.
    Nalimova VA, Sklovsky DE, Bondarenko GN et al (1997) Lithium interaction with carbon nanotubes. Synth Met 88:89–93CrossRefGoogle Scholar
  43. 43.
    Lee JH, Kim GS, Choi YM et al (2008) Comparison of multiwalled carbon nanotubes and carbon black as percolative paths in aqueous-based natural graphite negative electrodes with high-rate capability for lithium-ion batteries. J Power Sour 184:308–311CrossRefGoogle Scholar
  44. 44.
    Frackowiak E, Gautier S, Gaucher H et al (1999) Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37:61–69CrossRefGoogle Scholar
  45. 45.
    Maurin G, Bousquet Ch, Henn F et al (1999) Electrochemical intercalation of lithium into multiwall carbon nanotubes. Chem Phys Lett 312:14–18CrossRefGoogle Scholar
  46. 46.
    Leroux F, Metenier K, Gautier S et al (1999) Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes. J Power Sour 81–82:317–322CrossRefGoogle Scholar
  47. 47.
    Lu W, Chung DDL (2001) Anodic performance of vapor-derived carbon filaments in lithium-ion secondary battery. Carbon 39:493–496CrossRefGoogle Scholar
  48. 48.
    Yang Z, Wu HQ, Simard B (2002) Charge-discharge characteristics of raw acid-oxidized carbon nanotubes. Electrochem Commun 4:574–578CrossRefGoogle Scholar
  49. 49.
    Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787CrossRefGoogle Scholar
  50. 50.
    Shin HC, Liu M, Sadanadan B et al (2002) Electrochemical insertion of lithium into multi-walled carbon nanotubes prepared by catalytic decomposition. J Power Sour 112:216–221CrossRefGoogle Scholar
  51. 51.
    Chen WX, Lee JY, Liu Z (2003) The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes. Carbon 41:959–966CrossRefGoogle Scholar
  52. 52.
    Yoon SH, Park CW, Yang HJ et al (2004) Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon 42:21–32CrossRefGoogle Scholar
  53. 53.
    Wang X, Liu H, Jin Y et al (2006) Polymer-functionalized multiwalled carbon nanotubes as lithium intercalation hosts. J Phys Chem B 110:10236–10240CrossRefGoogle Scholar
  54. 54.
    Deng D, Lee JY (2007) One-step synthesis of polycrystalline carbon nanofibers with periodic dome-shaped interiors and their reversible lithium ion storage properties. Chem Mater 19:4198–4204CrossRefGoogle Scholar
  55. 55.
    Park MS, Needham SA, Wang GX et al (2007) Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries. Chem Mater 19:2406–2410CrossRefGoogle Scholar
  56. 56.
    Chen Liu Y, Minett AI et al (2007) Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery. Chem Mater 19:3593–3597Google Scholar
  57. 57.
    Garau C, Frontera A, Quiñonero D et al (2004) Ab initio investigations of lithium diffusion in single-walled carbon nanotubes. Chem Phys 297:85–91CrossRefGoogle Scholar
  58. 58.
    Claye AS, Fischer JE, Huffman CB et al (2000) Solid-state electrochemistry of the Li single wall carbon nanotube system. J Electrochem Soc 147:2845–2852CrossRefGoogle Scholar
  59. 59.
    Jouguelet E, Mathis C, Petit P (2000) Controlling the electronic properties of single-wall carbon nanotubes by chemical doping. Chem Phys Lett 318:561–564CrossRefGoogle Scholar
  60. 60.
    Gao B, Bower C, Lorentzen JD et al (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327:69–75CrossRefGoogle Scholar
  61. 61.
    Yang ZH, Wu HQ (2001) The electrochemical impedance measurements of carbon nanotubes. Chem Phys Lett 343:235–240CrossRefGoogle Scholar
  62. 62.
    Morris RS, Dixon BG, Gennett T et al (2004) High-energy, rechargeable Li-ion battery based on carbon nanotube technology. J Power Sour 138:277–280CrossRefGoogle Scholar
  63. 63.
    Ng SH, Wang J, Guo ZP et al (2005) Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim Acta 51:23–28CrossRefGoogle Scholar
  64. 64.
    Udomvech A, Kerdcharoen T, Osotchan T (2005) First principles study of Li and Li+ adsorbed on carbon nanotube: variation of tubule diameter and length. Chem Phys Lett 406:161–166CrossRefGoogle Scholar
  65. 65.
    Wu GT, Wang CS, Zhang XB et al (1998) Lithium insertion into CuO/carbon nanotubes. J Power Sour 75:175–179CrossRefGoogle Scholar
  66. 66.
    Gao B, Kleinhammes A, Tang XP et al (1997) Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem Phys Lett 307:153–157CrossRefGoogle Scholar
  67. 67.
    Zhou O, Fleming RM, Murphy DW et al (1994) Defects in carbon nanostructures. Science 263:1744–1747CrossRefGoogle Scholar
  68. 68.
    Suzuki S, Tomita M (1996) Observation of potassium-intercalated carbon nanotubes and their valence-band excitation spectra. J Appl Phys 79:3739–3743CrossRefGoogle Scholar
  69. 69.
    Endo M, Muramatsu H, Hayashi T et al (2005) Buckypaper’ from coaxial nanotubes. Nature 433:476CrossRefGoogle Scholar
  70. 70.
    Muramatsu H, Hayashi T, Kim YA et al (2005) Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper. Chem Phys Lett 414:444–448CrossRefGoogle Scholar
  71. 71.
    Kim YA, Kojima M, Muramatsu H et al (2006) In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. Small 2:667–676CrossRefGoogle Scholar
  72. 72.
    Miyamoto J, Hattori Y, Noguchi D et al (2006) Efficient H2 adsorption by nanopores of high-purity double-walled carbon nanotubes. J Am Chem Soc 128:12636–12637CrossRefGoogle Scholar
  73. 73.
    Tibbetts GG (1983) Carbon fibers produced by pyrolysis of natural gas in stainless steel tubes. Appl Phys Lett 42:666–668CrossRefGoogle Scholar
  74. 74.
    Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349CrossRefGoogle Scholar
  75. 75.
    Tibbetts GG, Gorkiewicz DW, Alig RL (1993) A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons. Carbon 31:809–814CrossRefGoogle Scholar
  76. 76.
    Endo M, Kim YA, Hayashi T et al (2001) Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39:1287–1297CrossRefGoogle Scholar
  77. 77.
    Sotowa C, Origi G, Takeuchi M et al (2008) The reinforcing effect of combined carbon nanotubes and acetylene blacks on the cathode electrode of lithium ion batteries. ChemSusChem 1:911–915CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Polymer Science and EngineeringChonnam National UniversityBuk-gu, GwangjuRepublic of Korea
  2. 2.Research Institute of Industrial Science and Technology (RIST)Nam-gu, PohangRepublic of Korea
  3. 3.Institute of Carbon Science and TechnologyShinshu UniversityNaganoJapan

Personalised recommendations