Advertisement

Why Grignard’s Century Old Nobel Prize Should Spark Your Curiosity

  • Claudiu B. Bucur
  • Thomas Gregory
  • John Muldoon
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Magnesium is an ideal metal anode which has nearly double the volumetric capacity of lithium metal with a very negative reduction potential of −2.37 versus SHE. The major advantage of magnesium is the apparent lack of dendritic formation during charging which overcomes the major safety and performance challenges encountered with using lithium metal anodes. In this chapter we highlight the major developments, notably the development of electrolytes and cathodes and discuss some of the challenges which must be overcome to realize a practical magnesium battery.

Keywords

Oxidative Stability Cathode Material Coulombic Efficiency Metal Anode High Oxidative Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amatucci GG, Badway F, Singhal A et al (2001) Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J Electrochem Soc 148:A940–A950. doi: 10.1149/1.1383777 CrossRefGoogle Scholar
  2. 2.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657. doi: 10.1038/451652a CrossRefGoogle Scholar
  3. 3.
    Arthur TS, Singh N, Matsui M (2012) Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem Commun 16:103–106. doi: 10.1016/j.elecom.2011.12.010 CrossRefGoogle Scholar
  4. 4.
    Aurbach D, Lu Z, Schechter A et al (2000) Prototype systems for rechargeable Magnesium batteries. Nature 407:724–727. doi: 10.1038/35037553 CrossRefGoogle Scholar
  5. 5.
    Aurbach D, Weissman I, Gofer Y, Levi E (2003) Nonaqueous Magnesium electrochemistry and its application in secondary batteries. Chem Rec 3:61–73. doi: 10.1002/tcr.10051 CrossRefGoogle Scholar
  6. 6.
    Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, Brunelli M (2007) Progress in rechargeable Magnesium battery technology. Adv Mater 19:4260–4266. doi: 10.1002/adma.200701495 CrossRefGoogle Scholar
  7. 7.
    Bochmann M, Sarsfield MJ (1998) Reaction of AlR3 with [CPh3][B(C6F5)4]:  facile degradation of [B(C6F5)4]- by transient “[AlR2]+.”Organometallics 17:5908–5912. doi:  10.1021/om980400j
  8. 8.
    Brenner A (1971) Note on the electrodeposition of Magnesium from an organic solution of a Magnesium–Boron complex. J Electrochem Soc 118:99. doi: 10.1149/1.2407964 CrossRefGoogle Scholar
  9. 9.
    Bruce PG, Krok F, Nowinski J et al (1991) Chemical intercalation of Magnesium into solid hosts. J Mater Chem 1:705–706. doi: 10.1039/JM9910100705 CrossRefGoogle Scholar
  10. 10.
    Carter TJ, Mohtadi R, Arthur TS et al (2014) Boron clusters as highly stable Magnesium-battery electrolytes. Angew Chem Int Ed 53:3173–3177. doi: 10.1002/anie.201310317 CrossRefGoogle Scholar
  11. 11.
    Chen Q, NuLi YN, Guo W, Yang J, Wang JL, Guo YG (2013) PTMA/Graphene as a novel cathode material for rechargeable Magnesium batteries. Acta Phys Chim Sin 29:2295–2299. doi: 10.3866/PKU.WHXB201309241 Google Scholar
  12. 12.
    Connor JH, Reid WE, Wood GB (1957) Electrodeposition of metals from organic solutions v. electrodeposition of Magnesium and Magnesium alloys. J Electrochem Soc 104:38–41. doi: 10.1149/1.2428492 CrossRefGoogle Scholar
  13. 13.
    Ding F, Xu W, Graff GL et al (2013) Dendrite-free Lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135:4450–4456. doi: 10.1021/ja312241y CrossRefGoogle Scholar
  14. 14.
    Doe RE, Han R, Hwang J et al (2013) Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable Magnesium batteries. Chem Commun 50:243–245. doi: 10.1039/C3CC47896C CrossRefGoogle Scholar
  15. 15.
    Gaddum LW, French HE (1927) The electrolysis of grignard solutions1. J Am Chem Soc 49:1295–1299. doi: 10.1021/ja01404a020 CrossRefGoogle Scholar
  16. 16.
    Gershinsky G, Yoo HD, Gofer Y, Aurbach D (2013) Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. Langmuir 29:10964–10972. doi: 10.1021/la402391f CrossRefGoogle Scholar
  17. 17.
    Giraudet J, Claves D, Guérin K et al (2007) Magnesium batteries: towards a first use of graphite fluorides. J Power Sources 173:592–598. doi: 10.1016/j.jpowsour.2007.04.067 CrossRefGoogle Scholar
  18. 18.
    Gregory TD, Hoffman RJ (1987) Electrochemical generator utilizing solid polymer-salt complex. United States Patent: 4702974Google Scholar
  19. 19.
    Gregory TD, Hoffman RJ, Winterton RC (1990) Nonaqueous electrochemistry of Magnesium: applications to energy storage. J Electrochem Soc 137:775–780. doi: 10.1149/1.2086553 CrossRefGoogle Scholar
  20. 20.
    Ichitsubo T, Adachi T, Yagi S, Doi T (2011) Potential positive electrodes for high-voltage Magnesium–Ion batteries. J Mater Chem 21:11764–11772. doi: 10.1039/C1JM11793A CrossRefGoogle Scholar
  21. 21.
    Inamoto M, Kurihara H, Yajima T (2013) Vanadium Pentoxide-based composite synthesized using microwave water plasma for cathode material in rechargeable Magnesium batteries. Materials 6:4514–4522. doi: 10.3390/ma6104514 CrossRefGoogle Scholar
  22. 22.
    Jiao L-F, Yuan H-T, Si Y-C et al (2006) Synthesis of Cu0.1-doped vanadium oxide nanotubes and their application as cathode materials for rechargeable Magnesium batteries. Electrochem Commun 8:1041–1044. doi: 10.1016/j.elecom.2006.03.043 CrossRefGoogle Scholar
  23. 23.
    Kim HS, Arthur TS, Allred GD et al (2011) Structure and compatibility of a Magnesium electrolyte with a sulphur cathode. Nat Commun 2:427. doi: 10.1038/ncomms1435 CrossRefGoogle Scholar
  24. 24.
    Koch VR, Nanjundiah C, Orsini M (1995) Rechargeable Magnesium power cells. NASA Technical Support Package MSC-22293Google Scholar
  25. 25.
    Lancry E, Levi E, Gofer Y, Levi MD, Aurbach D (2005) The effect of milling on the performance of a Mo6S8 Chevrel phase as a cathode material for rechargeable Mg batteries. J Solid State Electrochem 9:259–266. doi: 10.1007/s10008-004-0633-7 CrossRefGoogle Scholar
  26. 26.
    Le DB, Passerini S, Coustier F et al (1998) Intercalation of polyvalent cations into V2O5 aerogels. Chem Mater 10:682–684. doi: 10.1021/cm9705101 CrossRefGoogle Scholar
  27. 27.
    Li Y, Nuli Y, Yang J et al (2011) MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable Magnesium batteries. Chin Sci Bull 56:386–390. doi: 10.1007/s11434-010-4247-4 CrossRefGoogle Scholar
  28. 28.
    Liang Y, Feng R, Yang S et al (2011) Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater 23:640–643. doi: 10.1002/adma.201003560 CrossRefGoogle Scholar
  29. 29.
    Liu T, Shao Y, Li G et al (2014) A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. J Mater Chem A 2:3430–3438. doi: 10.1039/C3TA14825D CrossRefGoogle Scholar
  30. 30.
    Liu Y, Jiao L, Wu Q et al (2013) Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. J Mater Chem A 1:5822–5826. doi: 10.1039/C3TA10786H CrossRefGoogle Scholar
  31. 31.
    Makino K, Katayama Y, Miura T, Kishi T (2001) Electrochemical insertion of Magnesium to Mg0.5Ti2(PO4)3. J Power Sources 99:66–69. doi: 10.1016/S0378-7753(01)00480-3 CrossRefGoogle Scholar
  32. 32.
    Mayer A (1990) Electrodeposition of Aluminum, Aluminum/Magnesium Alloys, and Magnesium from organometallic electrolytes. J Electrochem Soc 137:2806–2809. doi: 10.1149/1.2087078 CrossRefGoogle Scholar
  33. 33.
    Mohtadi R, Matsui M, Arthur TS, Hwang S-J (2012) Magnesium Borohydride: from Hydrogen storage to Magnesium battery. Angew Chem Int Ed 51:9780–9783. doi: 10.1002/anie.201204913 CrossRefGoogle Scholar
  34. 34.
    Muldoon J, Bucur CB, Gregory T (2014) The quest for non-aqueous multivalent secondary batteries: Magnesium and beyond. Chem Rev (accepted)Google Scholar
  35. 35.
    Muldoon J, Bucur CB, Oliver AG et al (2012) Electrolyte roadblocks to a Magnesium rechargeable battery. Energy Environ Sci 5:5941–5950. doi: 10.1039/C2EE03029B CrossRefGoogle Scholar
  36. 36.
    Muldoon J, Bucur CB, Oliver AG et al (2013) Corrosion of Magnesium electrolytes: chlorides—the culprit. Energy Environ Sci 6:482–487. doi: 10.1039/C2EE23686A CrossRefGoogle Scholar
  37. 37.
    Novák P, Desilvestro J (1993) Electrochemical insertion of Magnesium in metal oxides and sulfides from aprotic electrolytes. J Electrochem Soc 140:140–144. doi: 10.1149/1.2056075 CrossRefGoogle Scholar
  38. 38.
    Novák P, Scheifele W, Joho F, Haas O (1995) Electrochemical insertion of Magnesium into hydrated Vanadium bronzes. J Electrochem Soc 142:2544–2550. doi: 10.1149/1.2050051 CrossRefGoogle Scholar
  39. 39.
    NuLi Y, Yang J, Li Y, Wang J (2010) Mesoporous Magnesium Manganese silicate as cathode materials for rechargeable Magnesium batteries. Chem Commun 46:3794–3796. doi: 10.1039/C002456B CrossRefGoogle Scholar
  40. 40.
    NuLi Y, Yang J, Wang J, Li Y (2009) Electrochemical intercalation of Mg2+ in Magnesium Manganese Silicate and its application as high-energy rechargeable Magnesium battery cathode. J Phys Chem C 113:12594–12597. doi: 10.1021/jp903188b CrossRefGoogle Scholar
  41. 41.
    NuLi Y, Guo Z, Liu H, Yang J (2007) A new class of cathode materials for rechargeable Magnesium batteries: organosulfur compounds based on Sulfur–Sulfur bonds. Electrochem Commun 9:1913–1917. doi: 10.1016/j.elecom.2007.05.009 CrossRefGoogle Scholar
  42. 42.
    Pour N, Gofer Y, Major DT, Aurbach D (2011) Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J Am Chem Soc 133:6270–6278. doi: 10.1021/ja1098512 CrossRefGoogle Scholar
  43. 43.
    Rasul S, Suzuki S, Yamaguchi S, Miyayama M (2011) Microstructural effects on the Mg–ion intercalation mechanism in MnO2/Acetylene black composite cathodes for Magnesium–Ion rechargeable batteries. Abstract 615, 220th ECS Meeting, BostonGoogle Scholar
  44. 44.
    Saha P, Kanchan Datta M, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN (2014) Rechargeable Magnesium battery: current status and key challenges for the future. Prog Mat Sci 66:1–86. doi: 10.1016/j.pmatsci.2014.04.001 CrossRefGoogle Scholar
  45. 45.
    Sano H, Senoh H, Yao M, Sakaebe H, Kiyobayashi T (2012) Mg2+ storage in organic positive-electrode active material based on 2,5-Dimethoxy-1,4-benzoquinone. Chem Lett 41:1594–1596. doi: 10.1246/cl.2012.1594 CrossRefGoogle Scholar
  46. 46.
    Schaefer JL, Lu Y, Moganty SS, Agarwal P, Jayaprakash N, Archer LA (2012) Electrolytes for high-energy lithium batteries. Appl Nanosci 2:91–109. doi: 10.1007/s13204-011-0044-x CrossRefGoogle Scholar
  47. 47.
    Shao Y, Gu M, Li X et al (2014) Highly reversible Mg insertion in nanostructured Bi for Mg Ion batteries. Nano Lett 14:255–260. doi: 10.1021/nl403874y CrossRefGoogle Scholar
  48. 48.
    Shiga T, Hase Y, Kato Y et al (2013) A rechargeable non-aqueous Mg–O2 battery. Chem Commun 49:9152–9154. doi: 10.1039/C3CC43477J CrossRefGoogle Scholar
  49. 49.
    Shterenberg I, Salama M, Gofer Y et al (2014) The challenge of developing rechargeable Magnesium batteries. MRS Bull 39:453–460. doi: 10.1557/mrs.2014.61 CrossRefGoogle Scholar
  50. 50.
    Singh N, Arthur TS, Ling C et al (2012) A high energy-density tin anode for rechargeable Magnesium–Ion batteries. Chem Commun 49:149–151. doi: 10.1039/C2CC34673G CrossRefGoogle Scholar
  51. 51.
    Spahr ME, Novák P, Haas O, Nesper R (1995) Electrochemical insertion of Lithium, Sodium, and Magnesium in Molybdenum(VI) oxide. J Power Sources 54:346–351. doi: 10.1016/0378-7753(94)02099-O CrossRefGoogle Scholar
  52. 52.
    Sutto TE, Duncan TT (2012) Electrochemical and structural characterization of Mg ion intercalation into RuO2 using an ionic liquid electrolyte. Electrochim Acta 79:170–174. doi: 10.1016/j.electacta.2012.06.099 CrossRefGoogle Scholar
  53. 53.
    Sutto TE, Duncan TT (2012) Electrochemical and structural characterization of Mg ion intercalation into Co3O4 using ionic liquid electrolytes. Electrochim Acta 80:413–417. doi: 10.1016/j.electacta.2012.07.050 CrossRefGoogle Scholar
  54. 54.
    Tao Z-L, Xu L-N, Gou X-L, et al (2004) TiS2 nanotubes as the cathode materials of Mg–ion batteries. Chem Commun 18:2080–2081. doi:  10.1039/B403855J
  55. 55.
    Uhler EF (1963) Investigation of new cathode–anode couples for secondary batteries using molten salt electrolytes. U.S. Air Force Systems Command Technical Documentary Report ASD-TDR-63–115Google Scholar
  56. 56.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302. doi: 10.1021/cr020731c CrossRefGoogle Scholar
  57. 57.
    Xu K (2004) Nonaqueous liquid electrolytes for Lithium-based rechargeable batteries. Chem Rev 104:4303–4418. doi: 10.1021/cr030203g CrossRefGoogle Scholar
  58. 58.
    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279. doi: 10.1039/C3EE40871J CrossRefGoogle Scholar
  59. 59.
    Yu L, Zhang X (2004) Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content. J Colloids Interface Sci 278:160–165. doi:  10.1016/j.jcis.2004.05.028
  60. 60.
    Zhang R, Yu X, Nam K-W et al (2012) α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem Commun 23:110–113. doi: 10.1016/j.elecom.2012.07.021 CrossRefGoogle Scholar
  61. 61.
    Zheng G, Lee SW, Liang Z et al (2014) Interconnected hollow carbon nanospheres for stable Lithium metal anodes. Nat Nanotechnol 9:618–623. doi: 10.1038/nnano.2014.152 CrossRefGoogle Scholar
  62. 62.
    Zheng Y, NuLi Y, Chen Q et al (2012) Magnesium Cobalt silicate materials for reversible Magnesium Ion storage. Electrochim Acta 66:75–81. doi: 10.1016/j.electacta.2012.01.037 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Claudiu B. Bucur
    • 1
  • Thomas Gregory
    • 2
  • John Muldoon
    • 1
  1. 1.Toyota Research Institute of North AmericaAnn ArborUSA
  2. 2.Borealis Technology Solutions LLCMidlandUSA

Personalised recommendations