Olivine-Based Cathode Materials

  • Karim Zaghib
  • Alain Mauger
  • Christian M. Julien
Part of the Green Energy and Technology book series (GREEN)


This chapter report the physicochemical and electrochemical properties of positive electrode materials with the olivine-like structure LiMPO4 (M=Fe, Mn, Ni, Co) for high power lithium-ion batteries. One approach to provide insight into the structural and electronic properties of optimized electrode materials involves a systematic study by a combination of techniques including structural, magnetic and spectroscopic measurements. We expose successively the principle of the inductive effect in polyanionic frameworks, the synthesis route, the structure and morphology of olivine nano-particles and their electrochemical features in various situations including high temperature, high current density, and in humid atmosphere.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Initial Discharge Capacity High Resolution Transmission Electron Microscopy Image Carbon Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Padhi K, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  2. 2.
    Padhi K, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRefGoogle Scholar
  3. 3.
    Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4:A170–A172CrossRefGoogle Scholar
  4. 4.
    Dominko D, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim Acta 48:3709–3716CrossRefGoogle Scholar
  5. 5.
    Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode material. In: Proceedings of the 196th ECS meeting, Honolulu, Oct 1999, Extended Abstract no 127Google Scholar
  6. 6.
    Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97:503–507CrossRefGoogle Scholar
  7. 7.
    Bewlay SL, Konstantinov K, Wang GX, Dou SX, Liu HK (2004) Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater Lett 58:1788–1791CrossRefGoogle Scholar
  8. 8.
    Julien CM, Mauger A, Ait-Salah A, Massot M, Gendron F, Zaghib K (2007) Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics 13:395–411CrossRefGoogle Scholar
  9. 9.
    Weppner W, Huggins R (1977) Determination of the kinetic parameters of mixed-conducting electrodes and applications to the system Li3Sb. J Electrochem Soc 124:1569–1578CrossRefGoogle Scholar
  10. 10.
    Chen Z, Dahn JR (2002) Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy and tap density. J Electrochem Soc 149:A1184–A1189CrossRefGoogle Scholar
  11. 11.
    Ravet N, Besner S, Simoneau M, Vallée A, Armand M, Magnan JF (2005) Electrode materials with high surface conductivity. US Patent 6,962,666, 8 Nov 2005Google Scholar
  12. 12.
    Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1–10CrossRefGoogle Scholar
  13. 13.
    Pahdi AK, Manivannan M, Goodenough JB (1998) Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J Electrochem Soc 145:1518–1520CrossRefGoogle Scholar
  14. 14.
    Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sources 26:403–408CrossRefGoogle Scholar
  15. 15.
    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160CrossRefGoogle Scholar
  16. 16.
    Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc 150:A1394–A1398CrossRefGoogle Scholar
  17. 17.
    Zaghib K, Mauger A, Julien CM (2012) Overwiew of olivines in lithium batteries for green transportation and energy storage. J Solid State Electrochem 16:835–845CrossRefGoogle Scholar
  18. 18.
    Julien CM, Zaghib K, Mauger A, Groult H (2012) Enhanced electrochemical properties of LiFePO4 as positive electrode of Li-ion batteries for HEV application. Adv Chem Eng Sci 2:321–329Google Scholar
  19. 19.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954CrossRefGoogle Scholar
  20. 20.
    Ait-Salah A, Mauger A, Julien CM, Gendron F (2006) Nanosized impurity phases in relation to the mode of preparation of LiFeO4 effects. Mater Sci Eng, B 129:232–244CrossRefGoogle Scholar
  21. 21.
    Ait-Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) Reduction of Fe3+ impurities in LiFePO4 from the pyrolysis of organic precursor used for carbon deposition. J Electrochem Soc 153:A1692–A1701CrossRefGoogle Scholar
  22. 22.
    Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sources 195:8280–8288CrossRefGoogle Scholar
  23. 23.
    Brochu F, Guerfi A, Trottier J, Kopeć M, Mauger A, Groult H, Julien CM, Zaghib K (2012) Structure and electrochemistry of scaling nano C-LiFePO4 synthesized by hydrothermal route: complexing agent effect. J Power Sources 214:1–6CrossRefGoogle Scholar
  24. 24.
    Vediappan K, Guerfi A, Gariépy V, Demopoulos GP, Hovington P, Trottier J, Mauger A, Julien CM, Zaghib K (2014) Stirring effect in hydrothermal synthesis of C-LiFePO4. J Power Sources 266:99–106CrossRefGoogle Scholar
  25. 25.
    Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRefGoogle Scholar
  26. 26.
    Ait-Salah A, Dodd J, Mauger A, Yazami R, Gendron F, Julien CM (2006) Structural and magnetic properties of LiFePO4 and lithium extraction effects. Z Allg Inorg Chem 632:1598–1605CrossRefGoogle Scholar
  27. 27.
    Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714CrossRefGoogle Scholar
  28. 28.
    Ravet N, Gauthier M, Zaghib K, Goodenough JB, Mauger A, Gendron F, Julien CM (2007) Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from polymeric precursor. Chem Mater 19:2595–2602CrossRefGoogle Scholar
  29. 29.
    Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, Tarascon JM (2006) Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18:5520–5529CrossRefGoogle Scholar
  30. 30.
    Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20:462–469CrossRefGoogle Scholar
  31. 31.
    Yang S, Zavajil PY, Whittingham MS (2001) Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun 3:505–508Google Scholar
  32. 32.
    Sato M, Tajimi S, Okawa H, Uematsu K, Toda K (2002) Preparation of iron phosphate cathode material of Li3Fe2(PO4)3 by hydrothermal reaction and thermal decomposition processes. Solid State Ionics 152–153:247–251Google Scholar
  33. 33.
    Dokko K, Koizumi S, Kanamura K (2006) Electrochemical reactivity of LiFePO4 prepared by hydrothermal method. Chem Lett 35:338–339Google Scholar
  34. 34.
    Dokko K, Koizumi S, Sharaishi K, Kananura K (2007) Electrochemical properties of LiFePO4 prepared via hydrothermal route. J Power Sources 165:656–659Google Scholar
  35. 35.
    Jin B, Gu HB (2008) Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ionics 178:1907–1914Google Scholar
  36. 36.
    Murugan AV, Muraliganth T, Manthiram A (2009) One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M=Mn, Fe, and Co) cathodes. J Electrochem Soc 156:A79–A83 Google Scholar
  37. 37.
    Kim DH, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid State Lett 9:A439–A442Google Scholar
  38. 38.
    Kim DH, Kim J (2007) Synthesis of LiFePO4 nanoparticles and their electrochemical properties. J Phys Chem Solids 68:734–737Google Scholar
  39. 39.
    Kim DH, Lim JS, Kang JW, Kim EJ, Ahn HY, Kim J (2007) A new synthesis route to nanocrystalline olivine phosphates and their electrochemical properties. J Nanosci Nanotechnol 7:3949–3953Google Scholar
  40. 40.
    Azib T, Ammar S, Nowak S, Lau-Truing S, Groult H, Zaghib K, Mauger A, Julien CM (2012) Crystallinity of nano C-LiFePO4 prepared by the polyol process. J Power Sources 217:220–228Google Scholar
  41. 41.
    Saravanan K, Reddy MV, Balaya P, Gong H, Chowdari BVR, Vittal JJ (2009) Storage performance of LiFePO4 nanoplates. J. Mater. Chem 19:605–610Google Scholar
  42. 42.
    Yang H, Wu XL, Cao MH, Guo YG (2009) Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J Phys Chem C 113:3345–3351Google Scholar
  43. 43.
    Arcon D, Zorko A, Dominko R, Jaglicic Z (2004) A comparative studies of magnetic properties of LiFePO4 and LiMnPO4. J Phys C Condens Matter 16:5531–5548CrossRefGoogle Scholar
  44. 44.
    Geller S, Durand JL (1960) Refinement of the structure of LiMnPO4. Acta Crystallogr 13:325–329CrossRefGoogle Scholar
  45. 45.
    Santorro RP, Newnham RE (1987) Antiferromagnetism in LiFePO4. Acta Crystallogr 22:344–347CrossRefGoogle Scholar
  46. 46.
    Streltsov VA, Belokoneva EL, Tsirelson VG, Hansen NK (1993) Multipole analysis of the electron density in triphylite LiFePO4 using X-ray diffraction data. Acta Crystallogr B 49:147–153CrossRefGoogle Scholar
  47. 47.
    Rousse G, Rodriguez-Carvajal J, Patoux S, Masquelier C (2003) Magnetic structures of the triphylite LiFePO4 and its delithiated form FePO4. Chem Mater 15:4082–4090CrossRefGoogle Scholar
  48. 48.
    Losey A, Rakovan J, Huges J, Francis CA, Dyar MD (2004) Structural variation in the lithiophilite-triphylite series and other olivine-group structures. Canad Mineral 42:1105–1108CrossRefGoogle Scholar
  49. 49.
    Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97–98:498–502CrossRefGoogle Scholar
  50. 50.
    Nyten A, Thomas JO (2006) A neutron powder diffraction study of LiCoxFe1−xPO4 for x = 0, 0.25, 0.40, 0.60 and 0.75. Solid State Ionics 177:1327–1330CrossRefGoogle Scholar
  51. 51.
    Beale AM, Sankar G (2002) Following the structural changes in iron phosphate catalysts by in situ combined XRD/QuEXAFS technique. J Mater Chem 12:3064–3072CrossRefGoogle Scholar
  52. 52.
    Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229Google Scholar
  53. 53.
    Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97–98:498–502Google Scholar
  54. 54.
    Julien CM, Zaghib K, Mauger A, Massot M, Ait-Salah A, Selmane M, Gendron F (2006) Characterization of the carbon-coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100:063511CrossRefGoogle Scholar
  55. 55.
    Ait-Salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Mauger A, Julien CM (2006) FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochim Acta A 65:1007–1013Google Scholar
  56. 56.
    Julien CM, Ait-Salah A, Gendron F, Morhange JF, Mauger A, Ramana CV (2006) Microstructure of LiXPO4 (X=Ni Co, Mn) prepared by solid-state chemical reaction. Scripta Mater 55:1179–1182CrossRefGoogle Scholar
  57. 57.
    Burba CM, Frech R (2006) In situ transmission FTIR spectroelectrochemistry: A new technique for studying lithium batteries. Electrochem Acta 52:780–785CrossRefGoogle Scholar
  58. 58.
    Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds—II orthophosphates, -arsenates and -vanadates AIBIIXVO4. Spectrochim Acta, Part A 30:673–689Google Scholar
  59. 59.
    Ait-Salah A, Zaghib K, Mauger A, Gendron F, Julien CM (2006) Magnetic studies of the carbothermal effect on LiFePO4. Phys Status Solidi A 203:R1–R3CrossRefGoogle Scholar
  60. 60.
    Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State Lett 6:A207–A209CrossRefGoogle Scholar
  61. 61.
    Arnold G, Garche J, Hemmer R, Ströbele S, Vogler C, Wohlfgang-Mehrens M (2003) Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J Power Sources 119–121:247–251Google Scholar
  62. 62.
    Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F, Julien CM (2009) Non-stoichiometric LiFePO4: defects and related properties. Chem Mater 21:1636–1644Google Scholar
  63. 63.
    Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2008) Aging of LiFePO4 upon exposure to H2O. J Power Sources 185:698–710Google Scholar
  64. 64.
    Porcher W, Moreau P, Lestriez B, Jouanneau S, Guyomard D (2008) Electrocvhem Solid State Lett 11:A4–A8Google Scholar
  65. 65.
    Zaghib K, Ravet N, Gauthier M, Gendron F, Mauger A, Goodenough JB, Julien CM (2006) Optimized electrochemical performance of LiFePO4 at 60 °C with purity controlled by SQUID magnetometry. J Power Sources 163:560–566Google Scholar
  66. 66.
    Bramnik NN, Ehrenberg H (2008) Precursor-based synthesis and electrochemical performance of LiMnPO4. J Alloys Compd 464:259–264CrossRefGoogle Scholar
  67. 67.
    Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189Google Scholar
  68. 68.
    Drezen T, Kwon NH, Bowen P, Teerlinck I, Isono M, Exnar I (2007) Effect of partic1e size on LiMnPO4 cathodes. J Power Sources 174:949–953CrossRefGoogle Scholar
  69. 69.
    Wang D, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners J, Poletto L, Gratzel M (2009) High-performance. nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628CrossRefGoogle Scholar
  70. 70.
    Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552CrossRefGoogle Scholar
  71. 71.
    Liu JL, Hu DG, Huang T, Yu AS (2012) Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4•H2O as precursor. J Alloys Compd 518:58–62CrossRefGoogle Scholar
  72. 72.
    Bakenov Z, Taniguchi I (2010) LiMgxMn1–xPO4/C cathodes for lithium batteries prepared by a combination of spray pyrolysis with wet ballmilling. J Electrochem Soc 157:A430–A436CrossRefGoogle Scholar
  73. 73.
    Doan TNL, Bakenov Z, Taniguchi I (2010) Preparation of carbon coated LiMnPO4 powders by a combination of spray pyrolysis with dry ball-milling followed by heat treatment. Adv Powder Technol 21:187–196CrossRefGoogle Scholar
  74. 74.
    Xiao J, Xu W, Choi D, Zhang J (2010) Synthesis and characterization of lithium manganese phosphate by a precipitation method. J Electrochem Soc 157:A142–A147CrossRefGoogle Scholar
  75. 75.
    Fujimoto D, Lei Y, Huang ZH, Kang F, Kawamura J (2014) Synthesis and electrochemical performance of LiMnPO4 by hydrothermal method. Int J Electrochem 2014:768912CrossRefGoogle Scholar
  76. 76.
    Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M=Fe, Mn) nanomaterials for lithium-ion batteries. Adv Ener Mater 2:284–297CrossRefGoogle Scholar
  77. 77.
    Zhou F, Zhu P, Fu X, Chen R, Sun R, Wong C (2014) Comparative study of LiMnPO4 cathode materials synthesized by solvothermal methods using different manganese salts. Cryst Eng Comm 16:766–774CrossRefGoogle Scholar
  78. 78.
    Wang D, Buqa H, Crouzet M et al (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628CrossRefGoogle Scholar
  79. 79.
    Bakenov Z, Taniguchi I (2011) LiMnPO4 olivine as a cathode for lithium batteries. Open Mater Sci J 5:222–227CrossRefGoogle Scholar
  80. 80.
    Kwon NH, Fromm KM (2012) Enhanced electrochemical performance of <30 nm thin LiMnPO4 nanorods with reduced amount of carbon as a cathode for lithium ion batteries. Food Chem 133:1435–1440CrossRefGoogle Scholar
  81. 81.
    Kumar PR, Venkateswarlu M, Misra M, Mohanty AK, Satyanarayana N (2011) Carbon coated LiMnPO4 nanorods for lithioum batteries. J Electrochem Soc 158:A227–A230CrossRefGoogle Scholar
  82. 82.
    Yuan LF, Ge LL, Shen YH, Zhang H, Wang CP, Xie AJ (2013) Synthesis and electrochemical properties of Cu-doped LiMnPO4/C nanorods as cathode materials of lithium-ion batteries. J Nano Res 25:1–7CrossRefGoogle Scholar
  83. 83.
    Pivko M, Bele M, Tchernychova E, Logar NZ, dominko R, Gaberscek M (2012) Synthesis of nanometric LiMnPO4 via a two-step technique. Chem Mater 24:1041–1047CrossRefGoogle Scholar
  84. 84.
    Kim TA, Park HS, Lee MH, Lee SY, Song HK (2012) Restricted growth of LiMnPO4 nanoparticles evolved from a precursor seed. J Power Sources 210:1–6CrossRefGoogle Scholar
  85. 85.
    Kim J, Seo DH, Kim SW, Park YU, Kang K (2010) Mn based olivine electrode material with high power and energy. Chem Commun 46:1305–1307CrossRefGoogle Scholar
  86. 86.
    Lee KT, Kan WH, Nazar LF (2009) Proof of intercrystallite ionic transport in LiMPO4 electrodes (M=Fe, Mn). J Am Chem Soc 131:6044–6045CrossRefGoogle Scholar
  87. 87.
    Choi D, Wang D, Bae IT, Xiaot J, Nie Z, Wang W, Yiswanathan Y, Lee Y, Zhang JG, Graff G, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10(8):2799–2805CrossRefGoogle Scholar
  88. 88.
    Li L, Liu J, Chen L, Xu H, Yang J, Qian Y (2013) Effect of different carbon sources on the electrochemical properties of rod-like LMP/C nanocomposites. RSC Adv 3:6847–6852CrossRefGoogle Scholar
  89. 89.
    Zhao M, Fu Y, Xu N, Li G, Wu M, Gao X (2014) High performance LiMnPO4/C prepared by a crystallite size control method. J Mater Chem A 2:15070–15077CrossRefGoogle Scholar
  90. 90.
    Chen G, Richardson TJ (2010) Thermal instability of olivine-type LiMnPO4 cathodes. J Power Sources 195:1221–1224CrossRefGoogle Scholar
  91. 91.
    Zhong S, Xu Y, Li Y, Zeng H, Li W, Wang J (2012) Synthesis and electrochemical performance of LiMnPO4/C composites cathode materials. Rare Met 31:474–478Google Scholar
  92. 92.
    Wang L, Sun W, Li J, Gao J, He X, Jiang C (2012) Synthesis of electrochemically active LiMnPO4 via MnPO4•H2O with different morphology prepared by facile precipitation. Int J Electrochem Sci 7:3591–3600Google Scholar
  93. 93.
    Barpanda P, Djellab K, Recham N, Armand M, Tarascon JM (2011) Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries. J Mater Chem 21:10143–10152Google Scholar
  94. 94.
    Murugan AV, Muraliganth T, Ferreira PJ, Manthiram A (2009) Dimensionally modulated, single-crystalline LiMPO4 (M=Mn, Fe Co, and Ni) with nano-thumblike shapes for high-power energy storage. Inorg Chem 48:946–952Google Scholar
  95. 95.
    Kosova NV, Devyatkina ET, Ancharov AI, Markov AV, Karnaushenko DD, Makukha VK (2012) Structural studies of nanosized LiFe0.5Mn0.5PO4 under cycling by in situ synchrotron diffraction. Solid State Ionics 225:564–569CrossRefGoogle Scholar
  96. 96.
    Wang H, Yang Y, Liang Y, Cui LF, Casalongue HS, Li Y, Hong G, Cui Y, Da H (2011) LiMn1−xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50:7364–7368CrossRefGoogle Scholar
  97. 97.
    Kopec M, Yamada A, Kobayashi G, Nishimura S, Kanno R, Mauger A, Gendron F, Julien CM (2009) Structural and magnetic properties of Lix(MnyFe1−y)PO4 electrode materials for Li-ion batteries. J Power Sources 189:1154–1163CrossRefGoogle Scholar
  98. 98.
    Zaghib K, Mauger A, Gendron F, Massot M, Julien CM (2008) Insertion properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. Ionics 14:371–376CrossRefGoogle Scholar
  99. 99.
    Gardiner GR, Islam MS (2010) Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material. Chem Mater 22:1242–1248Google Scholar
  100. 100.
    Trottier J, Mathieu MC, Guerfi A, Zaghib K, Mauger A, Julien CM (2013) LiMnyFe1−yPO4 (0.5 ≤ y ≤ 0.8) cathode materials grown by hydrothermal route: electrochemical performance. ECS Trans 50–24:109–114Google Scholar
  101. 101.
    Hong Y, Tang Z, Hong Z, Zhang Z (2014) LiMn1−xFexPO4 (x = 0, 0.1, 0.2) nanorods synthesized by a facile solvothermal approach as high performance cathode materials for lithium-ion batteries. J Power Sources 248:655–659Google Scholar
  102. 102.
    Truong QD, Devaraju MK, Ganbe Y, Tomai T, Honma I (2013) Controlling the shape of LiCoPO4 nanocrystals by supercritical fluid process for enhanced energy storage properties. Sci Rep 4:3975Google Scholar
  103. 103.
    Wang F, Yang J, Nuli Y, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sources 196:4806–4810CrossRefGoogle Scholar
  104. 104.
    Su J, Wei BQ, Rong JP, Yin WY, Ye ZX, Tian XQ, Ren L, Cao MH, Hu CW (2011) A general solution-chemistry route to the synthesis LiMPO4 (M=Mn, Fe and Co) nanocrystals with [010] orientation for lithium ion batteries. J Solid State Chem 184:2909–2919CrossRefGoogle Scholar
  105. 105.
    Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sources 136:150–153CrossRefGoogle Scholar
  106. 106.
    Ni J, Gao L, Lu L (2013) Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques. J Power Sources 221:35–41CrossRefGoogle Scholar
  107. 107.
    Wolfenstine J, Read J, Allen J (2007) Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. J Power Sources 163:1070–1073Google Scholar
  108. 108.
    Wolfenstine J, Lee U, Poese B, Allen J (2005) Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J Power Sources 144:226–230Google Scholar
  109. 109.
    Wolfenstine J, Poese B, Allen J (2004) Chemical oxidation of LiCoPO4. J Power Sources 138:281–282Google Scholar
  110. 110.
    Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97–98:430–432Google Scholar
  111. 111.
    Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4. J Power Sources 145:74–81Google Scholar
  112. 112.
    Wolfenstine J (2006) Electrical conductivity of doped LiCoPO4. J Power Sources 158:1431–1435Google Scholar
  113. 113.
    Wang F, Yang J, Li YN, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sources 196:4806–4810Google Scholar
  114. 114.
    Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y, Miyanaga T, Watanabe I (2005) X-ray absorption spectroscopic study on the electronic structure of Li1−xCoPO4 electrodes as 4.8 V positive electrodes for rechargeable lithium ion batteries. J Phys Chem B 109:11197–11203Google Scholar
  115. 115.
    Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Phase transition occurring upon lithium insertion-extraction of LiCoPO4. Chem Mater 19:908–915Google Scholar
  116. 116.
    Zhao Y, Wang S, Zhao C, Xia D (2009) Synthesis and electrochemical performance of LiCoPO4 micron-rods by dispersant-aided hydrothermal method for lithium ion batteries. Rare Met 28:117–121Google Scholar
  117. 117.
    Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid State Lett 11:A89–A93Google Scholar
  118. 118.
    Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. J Alloys Compd 497:321–324Google Scholar
  119. 119.
    Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid State Lett 11:A89–A93Google Scholar
  120. 120.
    Aravindan V, Cheah YL, Chui Ling WC, Madhavi S (2012) Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J Electrochem Soc 159:A1435–A1439Google Scholar
  121. 121.
    Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142:389–390Google Scholar
  122. 122.
    Karthickprabhu S, Hirankumar G, Maheswaran A, Daries-Bella RS, Sanjeeviraja C (2014) Structural, morphological, vibrational and electrical studies on Zn doped nanocrystalline LiNiPO4. Mater Sci Forum 781:145–153CrossRefGoogle Scholar
  123. 123.
    Dimesso L, Becker D, Spanheimer C, Jaegermann W (2012) Investigation of graphitic carbon foams/LiNiPO4 composites. J Solid State Electrochem 16:3791–3798CrossRefGoogle Scholar
  124. 124.
    Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Characterization of phospho-olivines as materials for Li-ion celle cathodes. Ionics 8:17–26CrossRefGoogle Scholar
  125. 125.
    Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics 18:625–633CrossRefGoogle Scholar
  126. 126.
    Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRefGoogle Scholar
  127. 127.
    Sugiyama J, Nozaki H, Harada M, Kamazawa K, Ikedo Y, Miyake Y, Ofer O, Mansson M, Ansaldo EJ, Chow KH (2012) Diffusive behaviour in LiMPO4 with M=Fe Co, Ni probed by muon-spin relaxation. Phys Rev B 85:054111CrossRefGoogle Scholar
  128. 128.
    Wang D, Xiao J, Xu W, Zhang JG (2010) Investigation of LiNiPO4 as a cathode material for lithium ion battery. The 15th international meeting on lithium batteries, IMLB2010, abstract no°372Google Scholar
  129. 129.
    Minakshi M, Singh P, Ralph D, Appadoo D, Blackford M, Ionescu M (2012) Structural characteristics of olivine Li(Mg0.5Ni0.5)PO4 via TEM analysis. Ionics 18:583–590CrossRefGoogle Scholar
  130. 130.
    Ramana CV, Ait-Salah A, Utsunomiya S, Becker U, Mauger A, Gendron F, Julien CM (2006) Structural characteristics of lithium nickel phosphate olivine studied using analytical electron microscopy and raman spectroscopy. Chem Mater 18:3788–3794CrossRefGoogle Scholar
  131. 131.
    Cheruku R, Govindaraj G (2014) Structural and electrical conductivity studies of nanocrystalline olivine type LiNiPO4 material. Int J ChemTech Res 6:2017–2201Google Scholar
  132. 132.
    Goñi A, Lezama L, Barberis GE, Pizarro JL, Arriortua MI, Rojo T (1996) Magnetic properties of the LiMPO4 (M=Co, Ni) compounds. J Magn Magn Mater 164:251–255CrossRefGoogle Scholar
  133. 133.
    Santoro RP, Segal DJ, Newnham RE (1966) Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids 27:1192–1193CrossRefGoogle Scholar
  134. 134.
    Toft-Petersen R, Jensen J, Jensen TBS, Andersen NH, Christensen NB, Niedemayer C, Kenzelmann M, Skoulatos M, Le MD, Lefmann K, Hensen SR, Li J, Zarestky JL, Vaknin D (2011) High-field magnetic phase transition and spin excitations in magnetoelectric LiNiPO4. Phys Rev B 84:054408CrossRefGoogle Scholar
  135. 135.
    Vaknin D, Zarestky JL, Rivera JP, Schmid H (2004) Commensurate-incommensurate magnetic phase transition in magnetoelectric single crystal LiNiPO4. Phys Rev Lett 92:207201CrossRefGoogle Scholar
  136. 136.
    Fomin VI, Gnezdilov VP, Kurnosov VS, Peschanskii AV, Yeremenko AV, Schmid H, Rivera JP, Gentil S (2002) Raman scattering in a LiNiPO4 single crystal. Low Temp Phys 28:203–209CrossRefGoogle Scholar
  137. 137.
    Ficher CAJ, Prieto VMH, Islam MS (2008) Lithium battery materials LiMPO4 (M=Mn, Fe, Co and Ni): insights into defect association, transport mechanisms and doping behaviour. Chem Mater 20:5907–5915CrossRefGoogle Scholar
  138. 138.
    Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Garcia-Amores JM, Sanjuan ML, Amador U (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: a new high-pressure form of LMPO4 (M=Fe and Ni). Chem Mater 13:1570–1576CrossRefGoogle Scholar
  139. 139.
    Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn Co, Ni. Electrochem Commun 6:1144–1148Google Scholar
  140. 140.
    Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J Power Sources 165:887–891Google Scholar
  141. 141.
    Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82:075122Google Scholar
  142. 142.
    Rommel SM, Schall N, Brünig C, Weihrich R (2014) Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4. Monatsh Chem 145:385–404Google Scholar
  143. 143.
    Kausarjanjua N, Mumtaz M, Yabuq A, Sabahat S, Mujtaba A (2014) Electrocatalytic activity of LiNiPO4 and the copper doped analogues towards oxygen reduction. Nucleus 51:109–115Google Scholar
  144. 144.
    Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M=Fe, Mn Co, Ni) prepared via nonaqueous sol-gel route. J Electrochem Soc 153:A716–A723Google Scholar
  145. 145.
    Tsai A (2011) Synthesis and characterization of LiNiPO4 nanocrystals via microemulsion method as a new class of electrocatalyst for oxygen reduction. Master’s thesis, New Jersey Graduate School, New BrunswickGoogle Scholar
  146. 146.
    Prabu M, Selvasekarapandian S (2012) Dielectric and modulus studies of LiNiPO4. Mater Chem Phys 134:366–370Google Scholar
  147. 147.
    Gangulibabu DB, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) CAM sol-gel synthesized LiMPO4 (M=Co, Ni) cathodes for rechargeable lithium batteries. J Sol-Gel Sci Technol 49:137–144Google Scholar
  148. 148.
    Karthickprabhu S, Hirankumar G, Maheswaran A, Daries-Bella RS, Sanjeeviraja C (2013) Structural and conductivity studies on lanthanum doped LiNiPO4 prepared by polyol method. In: Chowdari BVR, Kawamura J, Mizusaki J, Amezawa K (eds) Proceedings of the 13th Asian conference on solid state ionics, Sendai, Japan 17–20 July 2012, World Scientific, SingaporeGoogle Scholar
  149. 149.
    Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Characterization of phospho-olivines as materials for Li-ion celle cathodes. Ionics 8:17–26Google Scholar
  150. 150.
    Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2012) Investigation on LiCoPO4 powders as cathode materials annealed under different atmospheres. J Solid State Electrochem 16:3911–3919Google Scholar
  151. 151.
    Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of the Mg-substitution on the graphitic carbon foams—LiNi1−yMgyPO4 composites as possible cathodes materials for 5 V applications. Mater Res Bull 48:559–565Google Scholar
  152. 152.
    Tabassam L, Giuli G, Moretti A, Nobili F, Marassi R, Minicucci M, Gunnella R, Olivi L, DiCicco A (2012) Structural study of LiFePO4-LiNiPO4 solid solutions. J Power Sources 213:287–295Google Scholar
  153. 153.
    Qing R, Yang MC, Meng YS, Sigmund W (2013) Synthesis of LiNixFe1−xPO4 solid solution as cathode materials for lithium ion batteries. Electrochim Acta 108:827–832Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Karim Zaghib
    • 1
  • Alain Mauger
    • 2
  • Christian M. Julien
    • 3
  1. 1.IREQVarennesCanada
  2. 2.IMPMCUniversité Pierre et Marie CurieParisFrance
  3. 3.PHENIXUniversité Pierre et Marie CurieParisFrance

Personalised recommendations