High Voltage Cathode Materials

  • Christian M. Julien
  • Alain Mauger
  • Karim Zaghib
  • Dong Liu
Part of the Green Energy and Technology book series (GREEN)


Owing to the progress in the field energy storage, new lithium insertion compounds are currently investigated as active cathode elements for high-voltage lithium-ion batteries  to improve the technology of the electric transportation. After preliminary considerations  dedicated to the principles governing LiBs and electron energies in the positive electrodes, this chapter addresses physico-chemical and electrochemical properties of the 5-V cathodes materials with various strutural frameworks. They are LiNi0.5Mn1.5O4 spinel oxides and their related doped parents and olivine, inverse spinel, fluorovanadate and fluorophosphate structures.


Discharge Capacity Electrochemical Performance Cathode Material Tetramethylene Sulfone Initial Discharge Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Goodenough JB (2002) Oxides cathodes. In: Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York pp 135–154Google Scholar
  2. 2.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603Google Scholar
  3. 3.
    Zaghib K, Dubé J, Dallaire A, Galoustov K, Guerfi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien CM (2012) Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. J Power Sour 219:36–44Google Scholar
  4. 4.
    Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x<1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789Google Scholar
  5. 5.
    Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries Chem Lett 30:642–643Google Scholar
  6. 6.
    Thackeray MM, David WIF, Bruce PG, Goodenough JB (1982) Lithium insertion into manganese spinels. Mater Res Bull 18:461–472Google Scholar
  7. 7.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194Google Scholar
  8. 8.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301Google Scholar
  9. 9.
    Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714Google Scholar
  10. 10.
    Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sour 195:939–954Google Scholar
  11. 11.
    Zaghib K, Mauger A, Julien CM (2012) Overview of olivines in lithium batteries for green transportation and energy storage. J Solid State Electrochem 16:835–845Google Scholar
  12. 12.
    Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sour 195:5442–5451Google Scholar
  13. 13.
    Liu GQ, Wen L, Liu YM (2010) Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J Solid State Electrochem 14:2191–2202Google Scholar
  14. 14.
    Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better. A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939Google Scholar
  15. 15.
    Liu D, Han J, Dontigny M, Charest P, Guerfi A, Zaghib K, Goodenough JB (2010) Redox behaviors of Ni and Cr with different counter cations in spinel cathodes for Li-ion batteries. J Electrochem Soc 157:A770–A775Google Scholar
  16. 16.
    Shin Y, Manthiram A (2003) Origin of the high voltage (>4.5 V) capacity of spinel lithium manganese oxides. Electrochim Acta 48:3583–3592Google Scholar
  17. 17.
    Obrovac MN, Gao Y, Dahn JR (1998) Explanation for the 4.8-V plateau in LiCrxMn2−xO4. Phys Rev B: Condens Matter 57:5728–5733Google Scholar
  18. 18.
    Gryffroy D, Vaudenberghe RE (1992) Cation distribution, cluster structure and ionic ordering of the spinel series LiNi0.5Mn1.5−xTixO4 and LiNi0.5−yMgyMn1.5O4. J Phys Chem Solids 53:777–784Google Scholar
  19. 19.
    Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2006) Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 12:117–126Google Scholar
  20. 20.
    Strobel P, Ibarra-Palos A, Anne M, Poinsignon C, Crisci A (2003) Cation ordering in Li2Mn3MO8 spinels: structural and vibration spectroscopy studies. Solid State Sci 5:1009–1018Google Scholar
  21. 21.
    Ariyoshi K, Iwakoshi Y, Nakayama N, Ohzuku T (2004) Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4 (P4332) in nonaqueous lithium cells. J Electrochem Soc 151:A296–A303Google Scholar
  22. 22.
    Kanamura K, Hoshikawa W, Umegaki T (2002) Electrochemical characteristics of LiNi0.5Mn1.5O4 cathodes with Ti or Al current collectors. J Electrochem Soc 149:A339–A345Google Scholar
  23. 23.
    Ohzuku T, Takeda S, Iwanaga M (1999) Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sour 81–82:90–94Google Scholar
  24. 24.
    Okada M, Lee YS, Yoshio M (2000) Cycle characterizations of LiMxMn2-xO4 (M = Co, Ni) materials for lithium secondary battery at wide voltage region. J Power Sour 90:196–200Google Scholar
  25. 25.
    Dokko K, Mohamedi M, Anzue N, Itoh T, Uchida I (2002) In situ Raman spectroscopic studies of LiNixMn2−xO4 thin film cathode materials for lithium ion secondary batteries. J Mater Chem 12:3688–3693Google Scholar
  26. 26.
    Takahashi K, Saitoh M, Sano M, Fujita M, Kifune K (2004) Electrochemical and structural properties of a 4.7 V-class LiNi0.5Mn1.5O4 positive electrode material prepared with a self-reaction method. J Electrochem Soc 151:A173–A177Google Scholar
  27. 27.
    Ooms FGB, Kelder EM, Schoonman J, Wagemaker M, Mulder FM (2002) High-voltage LiMgδNi0.5−δMn1.5O4 spinels for Li-ion batteries. Solid State Ionics 152–153:143–153Google Scholar
  28. 28.
    Blasse G (1966) Ferromagnetism and ferrimagnetism of oxygen spinels containing tetravalent manganese. J Phys Chem Solids 27:383–389Google Scholar
  29. 29.
    Amdouni N, Zaghib K, Gendron F, Mauger A, Julien CM (2007) Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods. J Magn Magn Mater 309:100–105Google Scholar
  30. 30.
    Mukai K, Sugiyama J (2010) An indicator to identify the Li[Ni1/2Mn3/2]O4 (P4332): dc-susceptibility measurements. J Electrochem Soc 157:A672–A676Google Scholar
  31. 31.
    Idemoto Y, Narai H, Koura N (2003) Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J Power Sour 119–121:125–129Google Scholar
  32. 32.
    Park SH, Oh SW, Myung ST, Sun YK (2004) Mo6+-doped Li[Ni(0.5+x)Mn(1.5−2x)Mox]O4 spinel materials for 5 V lithium secondary batteries prepared by ultrasonic spray pyrolysis. Electrochem Solid-State Lett 7:A451–A454Google Scholar
  33. 33.
    Moorhead-Rosenberg Z, Shin DW, Chemelewski KR, Goodenough JB, Manthiram A (2012) Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements. Appl Phys Lett 100:213909-1–213909-5Google Scholar
  34. 34.
    Idemoto Y, Narai H, Koura N (2002) Oxygen content and electrode characteristics of LiMn1.5Ni0.5O4 as a 5 V class cathode material for lithium secondary battery. Electrochemistry 70:587–589Google Scholar
  35. 35.
    Rhodes K, Meisner R, Kim Y, Dudney N, Daniel C (2011) Evolution of phase transformation behavior in Li(Mn1.5Ni0.5)O4 cathodes studied by in situ XRD. J Electrochem Soc 158:A890–A897Google Scholar
  36. 36.
    Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4−δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd-m and P4332. Chem Mater 16:906–914Google Scholar
  37. 37.
    Bhaskar A, Bramnik NN, Senyshyn A, Fuess H, Ehrenberg H (2010) Synthesis, characterization, and comparison of electrochemical properties of LiM0.5Mn1.5O4 (M = Fe Co, Ni) at different temperatures. J Electrochem Soc 157:A689–A695Google Scholar
  38. 38.
    Terada Y, Yasaka K, Nishikawa F, Konishi T, Yoshio M, Nakai I (2001) In situ XAFS analysis of Li(Mn, M)2O4 (M = Cr Co, Ni) 5 V cathode materials for lithium-ion secondary batteries. J Solid State Chem 156:286–291Google Scholar
  39. 39.
    Wen W, Kumarasamy B, Mukerjee S, Auinat M, Ein-Eli Y (2005) Origin of 5 V electrochemical activity observed in non-redox reactive divalent cation doped LiM0.5−xMn1.5+xO4 (0 ≤ x≤0.5) cathode materials in situ XRD and XANES spectroscopy studies. J Electrochem Soc 152:A1902–A1911Google Scholar
  40. 40.
    Mukerjee S, Yang XQ, Sunb X, Lee SJ, McBreen J, Ein-Eli Y (2004) In situ synchrotron X-ray studies on copper–nickel 5 V Mn oxide spinel cathodes for Li-ion batteries. Electrochim Acta 49:3373–3382Google Scholar
  41. 41.
    Liu D, Lu Y, Goodenough JB (2010) Rate properties and elevated-temperature performances of LiNi0.5−xCr2xMn1.5−xO4 (0 ≤ 2x ≤ 0.8) as 5 V cathode materials for lithium-ion batteries. J Electrochem Soc 157:A1269–A1273Google Scholar
  42. 42.
    Wang L, Li H, Huang X, Baudrin E (2011) A comparative study of Fd-3 m and P4332 LiNi0.5Mn1.5O4. Solid State Ionics 193:32–38Google Scholar
  43. 43.
    Julien CM, Gendron F, Amdouni N, Massot M (2006) Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels. Mater Sci Eng B 130:41–48Google Scholar
  44. 44.
    Matsui M, Dokko K, Kanamura K (2010) Surface layer formation and stripping process on LiMn2O4 and LiNi1/2Mn3/2O4 thin film electrodes. J Electrochem Soc 157:A121–A129Google Scholar
  45. 45.
    Gao Y, Myrtle K, Zhang MJ, Reimers JN, Dahn JR (1996) Valence band of LiNixMn2-xO4 and its effects on the voltage profiles of LiNixMn2−xO4/Li electrochemical cells. Phys Rev B: Condens Matter 54:16670–16675Google Scholar
  46. 46.
    Shin Y, Manthiram A (2004) Factors influencing the capacity fade of spinel lithium manganese oxides. J Electrochem Soc 151:A204–A208Google Scholar
  47. 47.
    Patoux Q, Daniel L, Bourbon C, Lignier H, Pagano C, Le Cras F, Jouanneau S, Martinet S (2009) High voltage spinel oxides for Li-ion batteries: From the material research to the application. J Power Sour 189:344–352Google Scholar
  48. 48.
    Fang HS, Wang ZX, Li XH, Guo HJ, Peng WJ (2006) Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction. J Power Sources 153:174–176Google Scholar
  49. 49.
    Chen ZY, Ji S, Linkov V, Zhang JL, Zhu W (2009) Performance of LiNi0.5Mn1.5O4 prepared by solid-state reaction. J Power Sour 189:507–510Google Scholar
  50. 50.
    Miao C, Shi L, Chen G, Dai D (2012) Preparation of precursor of LiNi0.5Mn1.5O4 with high density. Adv Mater Res 463–464:881–884Google Scholar
  51. 51.
    Liu G, Qi L, Wen L (2006) Synthesis and electrochemical performance of LiNixMn2−xO4 spinel as cathode material for lithium ion batteries. Rare Met Mater Eng 35:299–302Google Scholar
  52. 52.
    Fang HS, Wang ZX, Yin ZL, Li XH, Guo HJ, Peng WJ (2005) Effect of ball milling and electrolyte on properties of high-voltage LiNi0.5Mn1.5O4 spinel. Trans Nonferrous Met Soc Chin (English) 15:1429–1432Google Scholar
  53. 53.
    Fang HS, Li LP, Li GS (2007) A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4. J Power Sour 167:223–227Google Scholar
  54. 54.
    Xu HY, Xie S, Ding N, Liu BL, Shang Y, Chen CH (2006) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel prepared by radiated polymer gel method. Electrochem Acta 51:4352–4357Google Scholar
  55. 55.
    Arunkumar TA, Manthiram A (2005) Influence of lattice parameter differences on the electrochemical performance of the 5 V spinel LiMn1.5 − yNi0.5 − zMy + zO4 (M = Li, Mg, Fe Co, and Zn). Electrochem Solid-State Lett 8:A403–A405Google Scholar
  56. 56.
    Aklalouch M, Amarilla JM, Saadoune I, Rojo JM (2011) LiCr0.2Ni0.4Mn1.4O4 spinels exhibiting huge rate capability at 25 and 55 C: analysis of the effect of the particle size. J Power Sour 196:10222–10227Google Scholar
  57. 57.
    Kim JH, Myung ST, Sun YK (2004) Molten salt synthesis of LiNi0(5Mn1(5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim Acta 49:219–227Google Scholar
  58. 58.
    Chen G, Hai B, Shukla AK, Duncan H (2012) Impact of LiMn1.5Ni0.5O4 crystal surface facets. ECS Symp Abstr700Google Scholar
  59. 59.
    Lim SJ, Ryu WH, Kim WK, Kwon HS (2012) Electrochemical performance of LiNi0.5Mn1.5O4 cathode material fabricated from nanothorn sphere structured MnO2. ECS Symp Abstr953Google Scholar
  60. 60.
    Zhao ZQ, Ma JF, Tian H, Xie LJ, Zhou J, Wu PW, Wang YG, Tao JT, Zhu XY (2005) Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 cathode material by the soft combustion reaction method. J Am Ceram Soc 88:3549–3552Google Scholar
  61. 61.
    Chen J, Cheng F (2009) Combination of lightweight elements and nanostructured materials for batteries. Acc Chem Res 42:713–723Google Scholar
  62. 62.
    Fan YK, Wang JM, Ye XB, Zhang JQ (2007) Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a co-precipitation method. Mater Chem Phys 103:19–23Google Scholar
  63. 63.
    Yi TF, Hu XG (2007) Preparation and characterization of sub-micro LiNi0.5−xMn1.5+xO4 for 5 V cathode materials synthesized by an ultrasonic-assisted co-precipitation method. J Power Sour 167:185–191Google Scholar
  64. 64.
    Ohzuku T, Ariyoshi K, Yamamoto S (2002) Synthesis and characterization of Li[Ni1/2Mn3/2]O4 by two-step solid state reaction. J Ceram Soc Jpn 110:501–505Google Scholar
  65. 65.
    Myung ST, Komaba S, Kumagai N, Yashiro H, Chung HT, Cho TH (2002) Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method. Electrochim Acta 47:2543–2549Google Scholar
  66. 66.
    Zhao Q, Ye N, Li L, Yan F (2010) Oxalate coprecipitation process synthesis of 5 V cathode material LiNi0.5Mn1.5O4 and its performance. Rare Met Mater Eng 39:1715–1718Google Scholar
  67. 67.
    Liu D, Han J, Goodenough JB (2010) Structure, morphology, and cathode performance of Li1−x[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acid. J Power Sour 195:2918–2923Google Scholar
  68. 68.
    Yang K, Su J, Zhang L, Long Y, Lv X, Wen Y (2012) Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries. Particuology 10:765–770Google Scholar
  69. 69.
    Cao A, Manthiram A (2012) Controlled synthesis of high tap density LiMn1.5Ni0.5O4 with tunable shapes. ECS Symp Abstr699Google Scholar
  70. 70.
    Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153:A1345–A1352Google Scholar
  71. 71.
    Yamada M, Dongying B, Kodera T, Myoujin K, Ogihara T (2009) Mass production of cathode materials for lithium ion battery by flame type spray pyrolysis. J Ceram Soc Jpn 117:1017–1020Google Scholar
  72. 72.
    Wu HM, Tu JP, Chen XT, Shi DQ, Zhao XB, Cao GS (2006) Synthesis and characterization of abundant Ni-doped LiNixMn2−xO4 (x = 0.1–0.5) powders by spray-drying method. Electrochim Acta 51:4148–4152Google Scholar
  73. 73.
    Park SH, Oh SW, Yoon CS, Myung ST, Sun YK (2005) LiNi0.5Mn1.5O4 showing reversible phase transition on 3 V region. Electrochem Solid-State Lett 8:A163–A167Google Scholar
  74. 74.
    Ogihara T, Kodera T, Myoujin K, Motohira S (2009) Preparation and electrochemical properties of cathode materials for lithium ion battery by aerosol process. Mater Sci Eng, B 161:109–114Google Scholar
  75. 75.
    Kojima M, Mukoyama I, Myoujin K, Kodera T, Ogihara T (2009) Mass production and battery properties of LiNi0.5Mn 1.5O4 powders prepared by internal combustion type spray pyrolysis. Key Eng Mater 388:85–88Google Scholar
  76. 76.
    Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1995) Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2-yO4 (0 < y<1). Solid State Ionics 81:167–170Google Scholar
  77. 77.
    Arrebola JC, Caballero A, Hernan L, Morales J (2008) PMMA-assisted synthesis of Li1−xNi0.5Mn1.5O4−δ for high-voltage lithium batteries with expanded rate capability at high cycling temperatures. J Power Sources 180:852–858Google Scholar
  78. 78.
    Kalyani P, Kalaiselvi N, Muniyandi N (2003) An innovative soft-chemistry approach to synthesize LiNiVO4. Mater Chem Phys 77:662–668Google Scholar
  79. 79.
    Liu J, Manthiram A (2009) Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J Phys Chem C 113:15073–15079Google Scholar
  80. 80.
    Zhong GB, Wang YY, Yu YQ, Chen CH (2012) Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe Co, Cr) 5 V cathode materials for lithium ion batteries. J Power Sour 205:385–393Google Scholar
  81. 81.
    Park SB, Eom WS, Cho WI, Jang H (2006) Electrochemical properties of LiNi0.5Mn1.5O4 cathode after Cr doping. J Power Sour 159:679–684Google Scholar
  82. 82.
    Amatucci GG, Pereira N, Zheng T, Tarascon JM (2001) Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2−xO4−zFz solid solution. J Electrochem Soc 148:A171–A182Google Scholar
  83. 83.
    Oh SW, Park SH, Kim JH, Bae YC, Sun YK (2006) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J Power Sour 157:464–470Google Scholar
  84. 84.
    Xu XX, Yang J, Wang YQ, Wang JL (2007) LiNi0.5Mn1.5O3.975F0.05 as novel 5-V cathode material. J Power Sour 174:1113–1116Google Scholar
  85. 85.
    Du GD, NuLi Y, Yang J, Wang J (2008) Fluorine-doped LiNi0.5Mn1.5O4 for 5 V cathode materials of lithium-ion battery. Mater Res Bull 43:3607–3613Google Scholar
  86. 86.
    Wu X, Zong X, Yang Q, Jin Z, Wu H (2001) Electrochemical studies of substituted spinel LiAlyMn2−yO4−zFz for lithium secondary batteries. J Fluorine Chem 107:39–44Google Scholar
  87. 87.
    Sun YK, Park GS, Lee YS, Yoshio M, Nahm KS (2001) Structural changes (degradation) of oxysulfide LiAl0.24Mn1.76O3.98S0.02 spinel on high-temperature cycling. J Electrochem Soc 148:A994–A998Google Scholar
  88. 88.
    Sun YK, Oh SW, Yoon CS, Bang HJ, Prakash J (2006) Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4−xSx spinel material in 3-V region. J Power Sour 161:19–26Google Scholar
  89. 89.
    Xi N, Zhong B, Chen M, Yin K, Li L, Liu H, Guo X (2013) Synthesis of LiCr0.2Ni0.4Mn1.4O4 with superior electrochemical performance via a two-step thermo polymerization technique. Electrochim Acta 97:184–191Google Scholar
  90. 90.
    Zheng J, Xiao J, Yu X, Kovarik L, Gu M, Omenya F, Chen X, Zhang JG (2012) Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys Chem Chem Phys 14:13515–13521Google Scholar
  91. 91.
    Amine K, Tukamoto H, Yasuda H, Fujita Y (1996) A New three-volt spinel Li1+xMn1.5Ni0.5O4 for secondary lithium batteries. J Electrochem Soc 143:1607–1613Google Scholar
  92. 92.
    Liu D, Hamel-Paquet J, Trottier J, Barray F, Gariépy V, Hovington P, Guerfi A, Mauger A, Julien CM, Goodenough JB, Zaghib K (2012) Synthesis of pure phase disordered LiMn1.45Cr0.1Ni0.45O4 by a post-annealing method. J Power Sour 217:400–406Google Scholar
  93. 93.
    Shin DW, Bridges CA, Huq A, M. Paranthaman MP, Manthiram A (2012) Role of cation ordering and surface segregation in high-voltage spinel LiMn1.5Ni0.5−xMxO4 (M = Cr, Fe, and Ga) cathodes for lithium-ion batteries. Chem Mater 24:3720–3731Google Scholar
  94. 94.
    Takahashi Y, Sasaoka H, Kuzuo R, Kijima N, Akimoto J (2006) A low-temperature synthetic route and electrochemical properties of micrometer-sized LiNi0.5Mn1.5O4 single crystals. Electrochem Solid-State Lett 9:A203–A206Google Scholar
  95. 95.
    Kanamura K, Hoshikawa W, Umegaki T (2001) Preparation and evaluation of new cathode materials for rechargeable lithium battery with 5 V. J Japn Soc Powder Met 48:283–287Google Scholar
  96. 96.
    Maeda Y, Ariyoshi K, Kawai T, Sekiya T, Ohzuku T (2009) Effect of deviation from Ni/Mn stoichiometry in Li[Ni1/2Mn3/2]O4 upon rechargeable capacity at 4.7 V in nonaqueous lithium cells. J Ceram Soc Jpn 117:1216–1220Google Scholar
  97. 97.
    Yoshio M, Konishi T, Todorov YM, Noguchi H (2000) Electrochemical behavior of nonstoichiometric LiMn2−xNixO4 as a 5-V cathode material. Electrochemistry 68:412–414Google Scholar
  98. 98.
    Xia H, Meng YS, Lu L, Ceder G (2007) Electrochemical properties of nonstoichiometric LiNi0.5Mn1.5O4−δ thin-film electrodes prepared by pulsed laser deposition. J Electrochem Soc 154:A737–A743Google Scholar
  99. 99.
    Pasero D, Reeves N, Pralong V, West AR (2008) Oxygen nonstoichiometry and phase transitions in LiMn1.5Ni0.5O4−δ. J Electrochem Soc 155:A282–A291Google Scholar
  100. 100.
    Jin YC, Lin CY, Duh JG (2012) Improving rate capability of high potential LiNi0.5Mn1.5O4−x cathode materials via increasing oxygen non-stoichiometries. Electrochim Acta 69:45–50Google Scholar
  101. 101.
    Wu X, Kim SB (2002) Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel. J Power Sour 109:53–57Google Scholar
  102. 102.
    Wu HM, Tu JP, Yuan YF, Li Y, Zhao XB, Cao GS (2005) Electrochemical and ex situ XRD studies of a LiMn1.5Ni0.5O4 high-voltage cathode material. Electrochim Acta 50:4104–4108Google Scholar
  103. 103.
    Kim JH, Yoon CS, Myung ST, Prakash J, Sun YK (2004) Phase transitions in Li1−δNi0.5Mn1.5O4 during cycling at 5 V. Electrochem Solid-State Lett 7:A216–A220Google Scholar
  104. 104.
    Alcántara R, Jaraba M, Lavela P, Tirado JL (2002) Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1−xNi0.5Mn1.5O4 spinel. Electrochim Acta 47:1829–1835Google Scholar
  105. 105.
    Zhu W, Liu D, Trottier J, Gagnon C, Mauger A, Julien CM, Zaghib K (2013) In-situ XRD study of the phase evolution in un-doped and Cr-doped LixMn1.5Ni0.5O4 (0.1 ≤ x≤0.1) 5-volt cathode materials. J Power Sour 242:236–243Google Scholar
  106. 106.
    Kim JH, Pieczonka NPW, Li Z, Wu Y, Harris S, Powell BR (2013) Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochim Acta 90:556–562Google Scholar
  107. 107.
    Hai B, Shukla AK, Duncan H, Chen G (2013) The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials. J Mater Chem A 1:759–769Google Scholar
  108. 108.
    Sun YK, Yoon CS, Oh IH (2003) Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures. Electrochim Acta 48:503–506Google Scholar
  109. 109.
    Aurbach D, Markovsky B, Talyosef Y, Salitra G, Kim HJ, Choi S (2006) Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells. J Power Sour 162:780–789Google Scholar
  110. 110.
    Mun J, Yim T, Park K, Ryu JH, Kim YG, Oh SM (2011) Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature. J Electrochem Soc 158:A453–A457Google Scholar
  111. 111.
    Wu W, Li X, Wang Z, Guo H, Wang J, Xue P (2013) Comprehensive reinvestigation on the initial coulombic efficiency and capacity fading mechanism of LiNi0.5Mn1.5O4 at low rate and elevated temperature. J Solid State Electrochem. doi:  10.1007/s10008-012-1963-5
  112. 112.
    Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2006) Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8:113–128Google Scholar
  113. 113.
    Liu J, Manthiram A (2009) Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem Mater 21:1695–1707Google Scholar
  114. 114.
    Liu J, Manthiram A (2009) Kinetics study of the 5 V spinel cathode LiMn1.5Ni0.5O4 before and after surface modifications. J Electrochem Soc 156:A833–A838Google Scholar
  115. 115.
    Kobayashi Y, Miyashiro H, Takei K, Shigemura H, Tabuchi M, Kageyama H, Iwahori T (2003) 5 V class all-solid-state composite lithium battery with Li3PO4 coated LiNi0.5Mn1.5O4. J Electrochem Soc 150:A1577–A1582Google Scholar
  116. 116.
    Arrebola J, Caballero A, Hernan L, Morales J, Castellon ER, Ramos-Barrado JR (2007) Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries. J Electrochem Soc 154:A178–A184Google Scholar
  117. 117.
    Fan Y, Wang J, Tang Z, He W, Zhang J (2007) Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries. Electrochim Acta 52:3870–3875Google Scholar
  118. 118.
    Cho J, Kim YJ, Kim TJ, Park B (2001) Zero-strain intercalation cathode for rechargeable Li-ion cell. Ang Chem Int Ed 40:3367–3369Google Scholar
  119. 119.
    Chen Z, Dahn JR (2002) Effect of a ZrO2 Coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochem Solid-State Lett 5:A213–A216Google Scholar
  120. 120.
    Appapillai AT, Mansour AN, Cho J, Shao-Horn Y (2007) Microstructure of LiCoO2 with and without “AlPO4” nanoparticle coating: combined STEM and XPS studies. Chem Mater 19:5748–5757Google Scholar
  121. 121.
    Fey GTK, Li W, Dahn JR (1994) LiNiVO4: A 4.8 volt electrode material for lithium cells. J Electrochem Soc 141:2279–2282Google Scholar
  122. 122.
    Fey GTK, Dahn JR, Zhang M, Li W (1997) The effects of the stoichiometry and synthesis temperature on the preparation of the inverse spinel LiNiVO4 and its performance as a new high voltage cathode material. J Power Sour 68:549–552Google Scholar
  123. 123.
    Prabaharan SRS, Michael MS, Radhakrishna S, Julien C (1997) Novel low-temperature synthesis and characterization of LiNiVO4 for high-voltage Li-ion batteries. J Mater Chem 7:1791–1796Google Scholar
  124. 124.
    Fey GTK, Perng WB (1997) A new preparation method for a novel high voltage cathode material: LiNiVO4. Mater Chem Phys 47(1997):279–282Google Scholar
  125. 125.
    Rissouli K, Benkhouja K, Touaiher M, Ait-Salah A, Jaafari K, Fahad M, Julien C (2005) Structure and conductivity of lithiated vanadates LiMVO4 (M = Mn Co, Ni). J Phys IV France 123:265–269Google Scholar
  126. 126.
    Lu CH, Liou SJ (1998) Preparation of submicrometer LiNiVO4 powder by solution route for lithium ion secondary batteries. J Mater Sci Lett 17:733–735Google Scholar
  127. 127.
    Fey GTK, Huang DL (1999) Synthesis, characterization and cell performance of inverse spinel electrode materials for lithium secondary batteries. Electrochim Acta 45:295–314Google Scholar
  128. 128.
    Cao X, Xie L, Zhan H, Zhou Y (2008) Rheological phase synthesis and characterization of LiNiVO4 as a high voltage cathode material for lithium ion batteries. J New Mater Electrochem Syst 11:193–198Google Scholar
  129. 129.
    Vivekanandhan S, Venkateswarlu M, Satyanarayana N (2004) Glycerol-assisted gel combustion synthesis of nano-crystalline LiNiVO4 powders for secondary lithium batteries. Mater Lett 58:1218–1222Google Scholar
  130. 130.
    Chitra S, Kalyani P, Yebka B, Mohan T, Haro-Poniatowski E, Gangadharan R, Julien C (2000) Synthesis, characterization and electrochemical studies of LiNiVO4 cathode material in rechargeable lithium batteries. Mater Chem Phys 65:32–37Google Scholar
  131. 131.
    Subramania A, Angayarkanni N, Karthick SN, Vasudevan T (2006) Combustion synthesis of inverse spinel LiNiVO4 nano-particles using gelatine as the new fuel. Mater Lett 60:3023–3026Google Scholar
  132. 132.
    Li X, Wei YJ, Ehrenberg H, Liu DL, Zhan SY, Wang CZ, Chen G (2009) X-ray diffraction and Raman scattering studies of Li+/e-extracted inverse spinel LiNiVO4. J Alloys Compd 471:L26–L28Google Scholar
  133. 133.
    Lai QY, Lu JZ, Liang XL, Yan FY, Ji XY (2001) Synthesis and electrochemical characteristics of Li-Ni vanadates as positive materials. Intern J Inorg Mater 3:381–385Google Scholar
  134. 134.
    Palanichamy K (2011) On the modified inverse spinel-LiCo(PO4)x(VO4)1−x as cathode for rechargeable lithium batteries. Ionics 17:391–397Google Scholar
  135. 135.
    Fey GTK, Chen KS (1999) Synthesis, characterization, and cell performance of LiNiVO4 cathode materials prepared by a new solution precipitation method. J Power Sour 81–82:467–471Google Scholar
  136. 136.
    Lu CH, Liou SJ (2000) Hydrothermal preparation of nanometer lithium nickel vanadium oxide powder at low temperature. Mater Sci Eng, B 75:38–42Google Scholar
  137. 137.
    Phuruangrat A, Thongtem T, Thongtem S (2007) Preparation and characterization of nano-crystalline LiCoVO4 and LiNiVO4 used as cathodes for lithium ion batteries. J Ceram Proc Res 8:450–452Google Scholar
  138. 138.
    Phuruangrat A, Thongtem T, Thongtem S (2007) Characterization of nano-crystalline LiNiVO4 synthesized by hydrothermal process. Mater Lett 61:3805–3808Google Scholar
  139. 139.
    Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK (1999) Rare earth element (La) doped LiNiVO4 as cathode material for secondary lithium ion cells. Mater Sci Forum 315–317:105–112Google Scholar
  140. 140.
    Reddy MV, Pecquenard B, Vinatier P, Levasseur A (2007) Cyclic voltammetry and galvanostatic cycling characteristics of LiNiVO4 thin films during lithium insertion and re/de-insertion. Electrochem Commun 9:409–415Google Scholar
  141. 141.
    Kalyani P, Kalaiselvi N, Renganathan NG (2005) LiNiMxV1−xO4 (M = Co, Mg and Al) solid solutions—prospective cathode materials for rechargeable lithium batteries. Mater Chem Phys 90:196–202Google Scholar
  142. 142.
    Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2009) Positive electrode: lithium iron phosphate. In: Garche J (ed) Encyclopedia of electrochemical power sources. Elsevier Science Amsterdam 5:264–296Google Scholar
  143. 143.
    Julien CM, Mauger A, Ait-Salah A, Massot M, Gendron F, Zaghib K (2007) Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics 13:395–411Google Scholar
  144. 144.
    Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid-State Lett 11:A89–A93Google Scholar
  145. 145.
    Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152Google Scholar
  146. 146.
    Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sour 142:389–390Google Scholar
  147. 147.
    Minakshi M, Sharma N, Ralph D, Appadoo D, Nallathamby K (2011) Synthesis and characterization of Li(Co0.5Ni0.5)PO4 cathode for Li-ion aqueous battery applications. Electrochem Solid-State Lett 14:A86–A89Google Scholar
  148. 148.
    Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4. J Power Sour 145:74–81Google Scholar
  149. 149.
    Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) Electrochemical and structural study of LiCoPO4-based electrodes. J Solid State Electrochem 8:558–564Google Scholar
  150. 150.
    Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y (2004) Changes in electronic structure between cobalt and oxide ions of lithium cobalt phosphate as 4.8-V positive electrode material. Chem Mater 16:3399–3401Google Scholar
  151. 151.
    Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Phase transition occurring upon lithium insertion-extraction of LiCoPO4. Chem Mater 19:908–915Google Scholar
  152. 152.
    Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sour 97–98:430–432Google Scholar
  153. 153.
    Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. J Alloys Compd 497:321–324Google Scholar
  154. 154.
    Aravindan V, Cheah YL, Chui Ling WC, Madhavi S (2012) Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J Electrochem Soc 159:A1435–A1439Google Scholar
  155. 155.
    Rabanal ME, Gutierrez MC, Garcia-Alvarado F, Gonzalo EC, Arroyoy de Dompablo ME (2006) Improved electrode characteristics of olivine–LiCoPO4 processed by high energy milling. J Power Sour 160:523–528Google Scholar
  156. 156.
    Koleva V, Zhecheva E, Stoyanova R (2010) Ordered olivine-type lithium-cobalt and lithium-nickel phosphates prepared by a new precursor method. Eur J Inorg Chem 26:4091–4099Google Scholar
  157. 157.
    Kandhasamy S, Pandey A, Minakshi M (2012) Polyvinyl-pyrrolidone assisted sol-gel route LiCo1/3Mn1/3Ni1/3PO4 composite cathode for aqueous rechargeable battery. Electrochim Acta 60:170–176Google Scholar
  158. 158.
    Eftekhari A (2004) Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide. J Electrochem Soc 151:A1456–A1460Google Scholar
  159. 159.
    Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) High potential positive materials for lithium-ion batteries: transition metal phosphates. J Phys Chem Solids 65:229–233Google Scholar
  160. 160.
    Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Hirankumar G, Sanjeeviraja C (2011) Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics 17:201–207Google Scholar
  161. 161.
    Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Daries-Bella RS (2013) Structural and conductivity studies on LiNiPO4 synthesized by the polyol method. J Alloys Compd 548:65–69Google Scholar
  162. 162.
    Lloris JM, Pérez-Vicente C, Tirado JL (2002) Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochem Solid-State Lett 5:A234–A237Google Scholar
  163. 163.
    Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn Co, Ni) prepared via a nonaqueous sol-gel route batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A716–A723Google Scholar
  164. 164.
    Gangulibabu N, Bhuvaneswari D, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) CAM sol-gel synthesized LiMPO4 (M = Co, Ni) cathodes for rechargeable lithium batteries. J Sol-Gel Sci Technol 49:137–144Google Scholar
  165. 165.
    Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn Co, Ni. Electrochem Commun 6:1144–1148Google Scholar
  166. 166.
    Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J Power Sour 165:887–891Google Scholar
  167. 167.
    Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189Google Scholar
  168. 168.
    Goñi A, Lezama L, Barberis GE, Pizarro JL, Arriortua MI, Rojo T (1996) Magnetic properties of the LiMPO4 (M = Co, Ni) compounds. J Magn Magn Mater 164:251–255Google Scholar
  169. 169.
    Santoro RP, Segal DJ, Newnham RE (1966) Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids 27:1192–1193Google Scholar
  170. 170.
    Kornev I, Bichurin M, Rivera JP, Gentil S, Schmid H, Jansen AGM, Wyder P (2000) Magnetoelectric properties of LiCoPO4 and LiNiPO4. Phys Rev B Condens Matter 62:12247–12253Google Scholar
  171. 171.
    Yamauchi K, Picozzi S (2010) Magnetic anisotropy in Li-phosphates and origin of magnetoelectricity in LiNiPO4. Phys Rev B: Condens Matter 81:024110Google Scholar
  172. 172.
    Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics 18:625–633Google Scholar
  173. 173.
    Fomin VI, Gnezdilov VP, Kurnosov VS, Peschanskii AV, Yeremenko AV, Schmid H, Rivera JP, Gentil S (2002) Raman scattering in a LiNiPO4 single crystal. Low Temp Phys 28:203–209Google Scholar
  174. 174.
    Shang SL, Wang Y, Mei ZG, Hui XD, Liu ZK (2012) Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe Co, and Ni): a comparative first-principles study. J Mater Chem 22:1142–1149Google Scholar
  175. 175.
    Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2012) Investigation on LiCoPO4 powders as cathode materials annealed under different atmospheres. J Solid State Electrochem 16:3911–3919Google Scholar
  176. 176.
    Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of the Mg-substitution on the graphitic carbon foams—LiNi1-yMgyPO4 composites as possible cathodes materials for 5 V applications. Mater Res Bull 48:559–565Google Scholar
  177. 177.
    Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8-V electrode material for lithium batteries. Electrochem Solid-State Lett 3:178–179Google Scholar
  178. 178.
    Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sour 136:150–153Google Scholar
  179. 179.
    Ni J, Gao L, Lu L (2013) Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques. J Power Sour 221:35–41Google Scholar
  180. 180.
    Wolfenstine J, Read J, Allen J (2007) Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. J Power Sour 163:1070–1073Google Scholar
  181. 181.
    Wolfenstine J, Lee U, Poese B, Allen J (2005) Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J Power Sour 144:226–230Google Scholar
  182. 182.
    Wolfenstine J, Poese B, Allen J (2004) Chemical oxidation of LiCoPO4. J Power Sour 138:281–282Google Scholar
  183. 183.
    Wolfenstine J (2006) Electrical conductivity of doped LiCoPO4. J Power Sour 158:1431–1435Google Scholar
  184. 184.
    Wang F, Yang J, Li YN, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sour 196:4806–4810Google Scholar
  185. 185.
    Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y, Miyanaga T, Watanabe I (2005) X-ray absorption spectroscopic study on the electronic structure of Li1-xCoPO4 electrodes as 4.8 V positive electrodes for rechargeable lithium ion batteries. J Phys Chem B 109:11197–11203Google Scholar
  186. 186.
    Dimesso L, Spanheimer C, Jaegermann W, Zhang Y, Yarin AL (2013) LiCoPO4—3D carbon nanofiber composites as possible cathode materials for high voltage applications. Electrochim Acta 97:38–42Google Scholar
  187. 187.
    Devaraju MK, Rangappa D, Honma I (2012) Controlled synthesis of plate-like LiCoPO4 nanoparticles via supercritical method and their electrode property. Electrochim Acta 85:548–553Google Scholar
  188. 188.
    Reddy MV, Subba-Rao GV, Chowdari BVR (2010) Long-term cycling studies on 4 V-cathode lithium vanadium fluorophosphates. J Power Sour 195:5768–5774Google Scholar
  189. 189.
    Okada S, Ueno M, Uebou Y, Yamaki JI (2005) Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries. J Power Sour 146:565–569Google Scholar
  190. 190.
    Khasanova NR, Gavrilov AN, Antipov EV, Bramnik KG, Hibst H (2011) Structural transformation of Li2CoPO4F upon Li-deintercalation. J Power Sour 196:355–360Google Scholar
  191. 191.
    Stroukoff KR, Manthiram A (2011) Thermal stability of spinel Li1.1Mn1.9−yMyO4−zFz (M = Ni, Al, and Li, 0 ≤ y ≤ 0.3, and 0 ≤ z≤0.2) cathodes for lithium ion batteries. J Mater Chem 21:10165–10170Google Scholar
  192. 192.
    Koyama Y, Tanaka I, Adachi H (2000) New fluoride cathodes for rechargeable lithium batteries. J Electrochem Soc 147:3633–3636Google Scholar
  193. 193.
    Dutreilh M, Chevalier C, El-Ghozzi M, Avignant D, Montel JM (1999) Synthesis and crystal structure of a new lithium nickel fluorophosphates Li2NiFPO4 with an ordered mixed anionic framework. J Solid State Chem 142:1–5Google Scholar
  194. 194.
    Nagahama M, Hasegawa N (2010) Okada S (2010) High voltage performances of Li2NiPO4F cathode with dinitrile-based electrolytes. J Electrochem Soc 157:A748–A752Google Scholar
  195. 195.
    Amaresh S, Karthikeyan K, Kim KJ, Kim MC, Chung KY, Cho BW, Lee YS (2013) Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. J Power Sour. doi: 10.1016/j.jpowsour.2012.12.010 Google Scholar
  196. 196.
    Barpanda P, Recham N, Chotard JN, Djellab K, Walker W, Armand M, Tarascon JM (2010) Structure and electrochemical properties of novel mixed Li(Fe1−xMx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis. J Mater Chem 20:1659–1668Google Scholar
  197. 197.
    Kim H, Lee S, Park YU, Kim H, Kim J, Jeon S, Kang K (2011) Neutron and X-ray diffraction study of pyrophosphate-based Li2−xMP2O7 (M = Fe, Co) for lithium rechargeable battery electrodes. Chem Mater 23:3930–3937Google Scholar
  198. 198.
    Xu KC, Cresce AVW (2012) Electrolytes in support of 5 V Li-ion chemistry. Patent appl number: 20120225359Google Scholar
  199. 199.
    La Mantia F, Huggins RA, Cui Y (2013) Oxidation processes on conducting carbon additives for lithium-ion batteries. J Appl Electrochem 43:1–17Google Scholar
  200. 200.
    Fang HS, Wang ZX, Li XH, Guo HJ, Peng WJ (2006) Low temperature synthesis of LiNi0.5Mn1.5O4 spinel. Mater Lett 60:1273–1275Google Scholar
  201. 201.
    Liu YJ, Liu ZY, Chen XH, Chen L (2012) Synthesis and performance of LiNi0.5Mn1.5O4 cathodes. J Central South Univ (Sci and Technol) 43:4248–4252Google Scholar
  202. 202.
    Julien C, Massot M, Pérez-Vicente C (2000) Structural and vibrational studies of LiNi1−yCoyVO4 (0 ≤ y≤1) cathodes materials for Li-ion batteries. Mater Sci Eng B 75:6–12Google Scholar
  203. 203.
    Minakshi M, Singh P, Appadoo D, Martin DE (2011) Synthesis and characterization of olivine LiNiPO4 for aqueous rechargeable battery. Electrochim Acta 56:4356–4360Google Scholar
  204. 204.
    Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82:075122Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian M. Julien
    • 1
  • Alain Mauger
    • 2
  • Karim Zaghib
    • 3
  • Dong Liu
    • 3
  1. 1.PHENIXUniversité Pierre et Marie CurieParisFrance
  2. 2.IMPMCUniversité Pierre et Marie CurieParisFrance
  3. 3.IREQVarennesCanada

Personalised recommendations