Solid-State Lithium Ion Electrolytes

  • C. Tealdi
  • E. Quartarone
  • P. Mustarelli
Part of the Green Energy and Technology book series (GREEN)


Lithium-ion batteries are the state-of-the-art power sources for portable electronics, and are considered as the most promising storage systems for automotive, and even for smart grids. At present, however, they have still serious safety problems, that are chiefly due to the presence of liquid or gel flammable and volatile chemicals in the electrolyte compartment. For this reason, the search for all solid-state lithium electrolytes has gained a renewed attention. In this chapter, we discuss the three main classes which at present are under study and development: (i) ceramic, (ii) glassy, and (iii) solvent-free polymer electrolytes.


Ionic Liquid Ionic Conductivity Polymer Electrolyte Crystallographic Site Polymeric Ionic Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    DOE/EPRI 2013 Electricity Storage HandbookGoogle Scholar
  2. 2.
    Bruce PG, Freunberger SA, Hardwick LJ, Tarascon J-M (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11:19–29CrossRefGoogle Scholar
  3. 3.
    Hayashi A, Noi K, Sakuda A, Tatsumisago M (2012) Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun 3:856–860CrossRefGoogle Scholar
  4. 4.
    Fergus JW (2010) Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sour 195:4554–4569CrossRefGoogle Scholar
  5. 5.
    Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40:2525–2540CrossRefGoogle Scholar
  6. 6.
    Cussen EJ (2010) Structure and ionic conductivity in lithium garnets. J Mater Chem 20:5167–5173CrossRefGoogle Scholar
  7. 7.
    Cao C, Li Z-B, Wang X-L et al (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 25:1–10Google Scholar
  8. 8.
    Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714–4727CrossRefGoogle Scholar
  9. 9.
    Kamaya N, Homma K, Yamakawa Y et al (2011) A lithium superionic conductor. Nat Mater 10:682–686CrossRefGoogle Scholar
  10. 10.
    Magistris A (1993) Ionic conduction in glasses. In: Scrosati B, Magistris A, Mari CM, Mariotto G (eds) Fast ion transport in solids: proceedings of the NATO advanced research workshop, Belgirate, Italy. NATO Science Series E, vol 250. Kluwer, Dordrecht, pp 120–132, 20–26 September 1992Google Scholar
  11. 11.
    Chandra A, Bhatt A, Chandra A (2013) Ion conduction in superionic glassy electrolytes: an overview. J Mater Sci Technol 29:193–208CrossRefGoogle Scholar
  12. 12.
    Belous AG, Novitskaya GN, Polyanetskaya SV et al (1987) Study of complex oxides with the composition La2/3−xLi3xTiO3. Inorg Mater 23:412–415Google Scholar
  13. 13.
    Inaguma Y, Chen L, Itoh M et al (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693CrossRefGoogle Scholar
  14. 14.
    Kawai H, Kuwano J (1994) Lithium ion conductivity of A-site deficient perovskite solid-solution La0.67−xLi3xTiO3. J Electrochem Soc 141:L78–L79CrossRefGoogle Scholar
  15. 15.
    Gao X, Fisher CAJ, Kimura T et al (2013) Lithium atom and A-site vacancy distributions in lanthanum lithium titanate. Chem Mater 25:1607–1614CrossRefGoogle Scholar
  16. 16.
    Bohnke O (2008) The fast lithium-ion conducting oxides Li3xLa2/3−xTiO3 from fundamentals to application. Solid State Ionics 179:9–15CrossRefGoogle Scholar
  17. 17.
    Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15:3974–3990CrossRefGoogle Scholar
  18. 18.
    Alonso JA, Sanz J, Santamaria J et al (2000) On the location of Li+ cations in the fast Li-cation conductor La0.5Li0.5TiO3 perovskite. Angew Chem Int Ed 39:619–621CrossRefGoogle Scholar
  19. 19.
    Emery J, Buzare JY, Bohnke O et al (1997) Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes. Solid State Ionics 99:41–51CrossRefGoogle Scholar
  20. 20.
    Harada Y, Hirakoso Y, Kawai H et al (1999) Order-disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67−xLi3xTiO3 (x = 0.11). Solid State Ionics 121:245–251CrossRefGoogle Scholar
  21. 21.
    Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916CrossRefGoogle Scholar
  22. 22.
    Inaguma Y, Nakashima M (2013) A rechargeable lithium-air battery using a lithium ion-conducting lanthanum lithium titanate ceramics as an electrolyte separator. J Power Sour 228:250–255CrossRefGoogle Scholar
  23. 23.
    Thangadurai V, Kaack H, Weppner WJF (2003) Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Ceram Soc 86:437–440CrossRefGoogle Scholar
  24. 24.
    Cussen EJ (2006) The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors. Chem Commun 4:412–413CrossRefGoogle Scholar
  25. 25.
    Ramzy A, Thangadurai V (2010) Tailor-made development of fast Li Ion conducting garnet-like solid electrolytes. ACS Appl Mater Interfaces 2:385–390CrossRefGoogle Scholar
  26. 26.
    Aatiq A, Menetrier M, Croguennec L et al (2002) On the structure of Li3Ti2(PO4)3. J Mater Chem 12:2971–2978Google Scholar
  27. 27.
    Aono H, Sugimoto E, Sadaoka Y et al (1991) Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3). Solid State Ionics 47:257–264CrossRefGoogle Scholar
  28. 28.
    Shimonishi Y, Zhang T, Imanishi N et al (2011) A study on lithium/air secondary batteries–stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sour 196:5128–5132CrossRefGoogle Scholar
  29. 29.
    Robertson AD, West AR, Ritchie AG (1997) Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ionics 104:1–11CrossRefGoogle Scholar
  30. 30.
    Kanno R, Hata T, Kawamoto Y, Irie M (2000) Synthesis of a new lithium ionic conductor, thio-LISICON lithium germanium sulfide system. Solid State Ionics 130:97–104CrossRefGoogle Scholar
  31. 31.
    Murayama M, Kanno R, Kawamoto Y, Kamiyama T (2002) Structure of the thio-LISICON, Li4GeS4. Solid State Ionics 154–155:789–794CrossRefGoogle Scholar
  32. 32.
    Murayama M, Kanno R, Irie M, Ito S, Hata T, No Sonoyama, Kawamoto Y (2002) Synthesis of new lithium ionic conductor Thio-LISICON—lithium silicon sulfides system. J Solid State Chem 168:140–148CrossRefGoogle Scholar
  33. 33.
    Warburg E (1913) Über die Diffusion von Metallen in Glas. Ann Phys 40:327–334CrossRefGoogle Scholar
  34. 34.
    Kunze D (1973) Silver ion conducting electrolyte with glass-like structure. In: Van Gool W (ed) Fast ion transport in solids. North Holland, Amsterdam, pp 405–408Google Scholar
  35. 35.
    Chiodelli G, Magistris A, Schiraldi A (1974) Some solid electrolyte cells. Electrochim Acta 19:655–656CrossRefGoogle Scholar
  36. 36.
    Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841–3851CrossRefGoogle Scholar
  37. 37.
    Tomasi C, Mustarelli P, Magistris A (1998) Devitrification and metastability: revisiting the phase diagram of the system AgI:Ag2MoO4. J Solid State Chem 140:91–96Google Scholar
  38. 38.
    Barney ER, Hannon AC, Holland D, Winslow D, Rjial B, Affatigato M, Feller SA (2007) Structural studies of lead aluminate glasses. J Non-Cryst Solids 353:1741–1747Google Scholar
  39. 39.
    Mustarelli P, Quartarone E, Benevelli F (1997) A 11B and 7Li MAS-NMR study of sol-gel lithium triborate glass subjected to thermal densification. Mat Res Bull 32:679–687CrossRefGoogle Scholar
  40. 40.
    Hayashi A, Hama S, Morimoto H et al (2001) Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J Am Ceram Soc 84:477–479CrossRefGoogle Scholar
  41. 41.
    Anderson OL, Stuart DA (1954) Calculation of activation energy of ionic conductivity in silica glasses by classical methods. J Am Ceram Soc 37:573–780CrossRefGoogle Scholar
  42. 42.
    Martin SW (1988) Conductivity activation energy relations in high sodium-content borate and aluminoborate glasses. J Am Ceram Soc 71:438–445CrossRefGoogle Scholar
  43. 43.
    Ravaine D, Souquet JL (1977) A thermodynamic approach to ionic conductivity in oxide glasses. Part. 1. Correlation of the ionic conductivity with the chemical potential of constituents in binary alkali oxide glasses. Phys Chem Glasses 18:27–31Google Scholar
  44. 44.
    Ravaine D, Souquet JL (1978) A thermodynamic approach to ionic conductivity in oxide glasses. Part. 2. A statistical model for the variations of the chemical potential of constituents in binary alkali oxide glasses. Phys Chem Glasses 19:115–120Google Scholar
  45. 45.
    Martin SW, Angell CA (1986) Dc and ac conductivity in wide composition range Li2O-P2O5 glasses. J Non-Cryst Solids 83:185–207CrossRefGoogle Scholar
  46. 46.
    Haven Y, Verkerk B (1965) Diffusion and electrical conductivity of sodium ions in sodium silicate glasses. Phys Chem Glasses 6:38–45Google Scholar
  47. 47.
    Charles RJ (1961) Polarization and diffusion in silicate glasses. J Appl Phys 32:1115–1126CrossRefGoogle Scholar
  48. 48.
    Moynihan CT, Lesikar AV (1981) Weak-electrolyte models for the mixed alkali effectin glass. J Am Ceram Soc 64:40–46CrossRefGoogle Scholar
  49. 49.
    Nassau K, Glass AM, Grasso M et al (1981) Quenched lithium-containing multiple sulphate glasses. J Non-Cryst Solids 46:45–58CrossRefGoogle Scholar
  50. 50.
    Angell CA (1986) Recent developments in fast ion transport in glassy and amorphous materials. Solid State Ionics 18&19:72–88CrossRefGoogle Scholar
  51. 51.
    Kawamura J, Shimoji M (1986) Ionic conductivity and glass transition in superionic conducting glasses (Agi)1−x(Ag2MoO4)x (x = 0.25, 0.30, 0.35): I. Experimental results in the liquid and glassy states. J Non-Cryst Solids 88:281–294CrossRefGoogle Scholar
  52. 52.
    Ingram MD, Mackenzie MA, Muller W et al (1988) Cluster and pathways: a new approach to ion migration in glass. Solid State Ionics 28–30:677–680CrossRefGoogle Scholar
  53. 53.
    Senapati H, Parthasarathy G, Lakshmikumar SK et al (1983) Effect of pressure on the fast-ion conduction in silver iodide-silver oxide-molybdenum oxide glasses. Phil Mag B 47:291–297CrossRefGoogle Scholar
  54. 54.
    Bunde A, Ingram MD, Maass P et al (1991) Mixed alkali effects in ionic conductors: a new model and computer simulations. J Non-Cryst Solids 131:1109–1112CrossRefGoogle Scholar
  55. 55.
    Maass P, Bunde A, Ingram MD (1992) Ion transport anomalies in glasses. Phys Rev Lett 68:3064–3067CrossRefGoogle Scholar
  56. 56.
    Funke K, Banhatti RD, Radha D (2006) Ionic motion in materials with disordered structures. Solid State Ionics 177:1551–1557CrossRefGoogle Scholar
  57. 57.
    Mustarelli P, Tomasi C, Magistris A (2005) Fractal nanochannels as the basis of the ionic transport in AgI-based glasses. J Phys Chem B 109:17417–17421CrossRefGoogle Scholar
  58. 58.
    St Adams, Swenson J (2000) Determining ionic conductivity from structural models of fast ionic conductors. Phys Rev Lett 84:4144–4147CrossRefGoogle Scholar
  59. 59.
    Button DP, Tandon RP, Tuller HL et al (1981) Fast Li+ conductance in chloroborate glasses II-diborates and metaborates. Solid State Ionics 5:655–658CrossRefGoogle Scholar
  60. 60.
    Magistris A, Chiodelli G, Villa M (1985) Lithium borophosphate vitreous electrolytes. J Power Sour 14:87–91CrossRefGoogle Scholar
  61. 61.
    Desphande V, Pradel A, Ribes M (1988) The mixed glass former effect in the Li2S:SiS2:GeS system. Mat Res Bull 23:379–384CrossRefGoogle Scholar
  62. 62.
    Yamauchi A, Sakuda A, Hayashi A, Tatsumisago M (2013) Preparation and ionic conductivities of (100 − x)(0.75Li2S:0.25P2S5):xLiBH4 glass electrolytes. J Power Sour 244:707–710CrossRefGoogle Scholar
  63. 63.
    Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium superion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7:627–631CrossRefGoogle Scholar
  64. 64.
    Maranas JK (2012) Polyelectrolytes for batteries: current state of understanding. In Page K (ed) Polymers for energy storage and delivery: polyelectrolytes and fuel cells. ACS Symposium Series. American Chemical Society, WashingtonGoogle Scholar
  65. 65.
    Armand M, Chabagno JM, Duclot MJ (1979). In: Vashishta P (ed) Fast ion transport in solids. North Holland, New YorkGoogle Scholar
  66. 66.
    Gray FM (1997) Polymer electrolytes. Roy Soc Chem, LondonGoogle Scholar
  67. 67.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462CrossRefGoogle Scholar
  68. 68.
    Armand MB, Bruce PG, Forsyth M et al (2011) Polymer electrolytes in energy materials. In: Bruce DW, O’Hare D, Walton RI (eds) Wiley, ChichesterGoogle Scholar
  69. 69.
    Hollinan DT, Balsara NP (2013) Polymer electrolytes. Annu Rev Mater Res 43:503–525CrossRefGoogle Scholar
  70. 70.
    Ratner MA, Shriver DF (1988) Ion transport in solvent-free polymers. Chem Rev 88:109–124CrossRefGoogle Scholar
  71. 71.
    Christie AM, Lilley SJ, Staunton E et al (2005) Increasing the conductivity of crystalline polymer electrolytes. Nature 433:50–53CrossRefGoogle Scholar
  72. 72.
    Mazor H, Golodnitsky D, Peled E et al (2008) A search for single-ion conducting polymer electrolyte: combined effect of anion trap and inorganic filler. J Power Sour 178:736–743CrossRefGoogle Scholar
  73. 73.
    Quartarone E, Mustarelli P (2014) Polyelectrolytes for batteries, encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 1–10CrossRefGoogle Scholar
  74. 74.
    Gomez ED, Panday A, Feng EH et al (2009) Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett 9:1212–1216CrossRefGoogle Scholar
  75. 75.
    Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite electrolytes. Solid State Ionics 110:1–14CrossRefGoogle Scholar
  76. 76.
    Ohno H (2007) Design of ion conductive polymers based on ionic liquids. Macromol Symp 249–250:551–556CrossRefGoogle Scholar
  77. 77.
    Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Progr Pol Sci 36:1629–1648CrossRefGoogle Scholar
  78. 78.
    Fourquet JL, Duroy H, Crosnier-Lopez MP (1996) Structural and microstructural studies of the series La2/3−xLi3x1/3−2xTiO3. J Solid State Chem 127:283–294CrossRefGoogle Scholar
  79. 79.
    Inaguma Y, Katsumata T, Itoh M et al (2002) Crystal structure of a lithium ion-conducting perovskite La2/3−xLi3xTiO3 (x = 0.05). J Solid State Chem 166:67–72CrossRefGoogle Scholar
  80. 80.
    Tiyapiboonchaiya C, Pringle JM, Sun J et al (2004) The zwitterion effect in high-conductivity polyelectrolytes materials. Nat Mater 3:29–32CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemistry, Section of Physical ChemistryUniversity of Pavia, and INSTMPaviaItaly

Personalised recommendations