Challenges of Key Materials for Rechargeable Batteries

  • Zhengcheng Zhang
  • Sheng Shui Zhang
Part of the Green Energy and Technology book series (GREEN)


Rechargeable batteries are a most energy- and cost-effective device for electrical energy storage in a wide range of energy levels from portable electronics through transportation vehicles to load-leveling stationary storage. This chapter outlines the current status and challenges that remain for the key materials of rechargeable batteries, especially lithium-ion batteries, including the cathode, anode, electrolyte, and separator. In addition, the prospectus and challenges of battery systems beyond Li-ion, such as sodium–ion, magnesium, lithium–air, and lithium–sulfur batteries, are also discussed for the future research and development of rechargeable batteries.  


Specific Capacity Cathode Material Oxygen Reduction Reaction Liquid Electrolyte Solid Electrolyte Interphase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312CrossRefGoogle Scholar
  2. 2.
    Xu J, Dou S, Liu H, Dai L (2013) Cathode materials for next generation lithium ion batteries. Nano Energy 2:439–442CrossRefGoogle Scholar
  3. 3.
    Chebiam RV, Kannan AM, Prado F, Manthiram A (2001) Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochem Commun 3:624–627CrossRefGoogle Scholar
  4. 4.
    Capitaine F, Gravereau P, Delmas C (1996) A new variety of LiMnO2 with a layered structure. Solid State Ionics 89:197–202CrossRefGoogle Scholar
  5. 5.
    Song SW, Zhuang GV, Ross PN (2004) Surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes using attenuated total reflection IR spectroscopy. J Electrochem Soc 151:A1162–A1167CrossRefGoogle Scholar
  6. 6.
    Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642–643CrossRefGoogle Scholar
  7. 7.
    Li X, Xu Y, Wang C (2009) Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode. J Alloy Compd 479:310–313CrossRefGoogle Scholar
  8. 8.
    Sun Y-K, Myung S-T, Park B-C, Prakash J, Belharouak I, Amine K (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324CrossRefGoogle Scholar
  9. 9.
    Manthiram A (2011) Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett 2:176–184CrossRefGoogle Scholar
  10. 10.
    Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698CrossRefGoogle Scholar
  11. 11.
    Mohanty D, Kalnaus S, Meisner RA, Rhodes KJ, Li J, Payzant EA, Wood Iii DL, Daniel C (2013) Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources 229:239–248CrossRefGoogle Scholar
  12. 12.
    Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160CrossRefGoogle Scholar
  13. 13.
    Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2002) Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem Solid-State Lett 5:A149–A151CrossRefGoogle Scholar
  14. 14.
    Muraliganth T, Manthiram A (2010) Understanding the shifts in the redox potentials of olivine LiM1−yMyPO4 (M = Fe, Mn Co, and Mg) solid solution cathodes. J Phys Chem C 114:15530–15540CrossRefGoogle Scholar
  15. 15.
    Liu J, Manthiram A (2009) Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J Phys Chem C 113:15073–15079CrossRefGoogle Scholar
  16. 16.
    Liu J, Manthiram A (2009) Understanding the improvement in the electrochemical properties of surface modified 5 V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells. Chem Mater 21:1695–1707CrossRefGoogle Scholar
  17. 17.
    Buiel E, Dahn JR (1999) Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim Acta 45:121–130CrossRefGoogle Scholar
  18. 18.
    He Y-B, Li B, Liu M, Zhang C, Lv W, Yang C, Li J, Du H, Zhang B, Yang Q-H, Kim J-K, Kang F (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2: Article No. 913. doi: 10.1038/srep00913
  19. 19.
    Park C-M, Kim J-H, Kim H, Sohn H-J (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev 39:3115–3141CrossRefGoogle Scholar
  20. 20.
    Hochgatterer NS, Schweiger MR, Koller S, Raimann PR, Woehrle T, Wurm C, Winter M (2008) Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid-State Lett 11:A76–A80CrossRefGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
    Cabana J, Monconduit L, Larcher D, Palacin MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:170–192CrossRefGoogle Scholar
  24. 24.
    Abouimrane A, Ding J, Davidson IJ (2009) Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: aluminum corrosion studies and lithium ion battery investigations. J Power Sources 189:693–696CrossRefGoogle Scholar
  25. 25.
    Hu M, Pang X, Zhou Z (2013) Recent progress in high-voltage lithium ion batteries. J Power Sources 237:229–242CrossRefGoogle Scholar
  26. 26.
    Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162:1379–1394CrossRefGoogle Scholar
  27. 27.
    Dalavi S, Xu M, Knight B, Lucht BL (2012) Effect of added LiBOB on high voltage (LiNi0.5Mn1.5O4) spinel cathodes. Electrochem Solid-State Lett 15:A28–A31CrossRefGoogle Scholar
  28. 28.
    von Cresce A, Xu K (2011) Electrolyte additive in support of 5 V Li ion chemistry. J Electrochem Soc 158:A337–A342CrossRefGoogle Scholar
  29. 29.
    Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364CrossRefGoogle Scholar
  30. 30.
    Zhang SS (2012) Effective approach toward safe Li-ion battery. In: Battery safety 2012, Las Vegas, NV, 6–7 Dec 2012Google Scholar
  31. 31.
    Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901CrossRefGoogle Scholar
  32. 32.
    Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRefGoogle Scholar
  33. 33.
    Barker J, Gover RKB, Burns P, Bryan AJ (2006) Hybrid-ion a lithium-ion cell based on a sodium insertion material. Electrochem Solid-State Lett 9:A190–A192CrossRefGoogle Scholar
  34. 34.
    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279CrossRefGoogle Scholar
  35. 35.
    Kim HS, Arthur TS, Allred GD, Zajicek J, Newman JG, Rodnyansky AE, Oliver AG, Boggess WC, Muldoon J (2011) Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2:427CrossRefGoogle Scholar
  36. 36.
    Arthur TS, Singh N, Matsui M (2012) Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem Commun 16:103–106CrossRefGoogle Scholar
  37. 37.
    Shao Y, Liu T, Li G, Gu M, Nie Z, Engelhard M, Xiao J, Lv D, Wang C, Zhang J-G, Liu J (2013) Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep 3: Article No. 3130. doi: 10.1038/srep03130
  38. 38.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727CrossRefGoogle Scholar
  39. 39.
    Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133:8040–8047CrossRefGoogle Scholar
  40. 40.
    Mozhzhukhina N, Méndez De Leo LP, Calvo EJ (2013) Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a Li–air battery. J Phys Chem C 117:18375–18380CrossRefGoogle Scholar
  41. 41.
    Li F, Kitaura H, Zhou H (2013) The pursuit of rechargeable solid-state Li-air batteries. Energy Environ Sci 6:2302–2311CrossRefGoogle Scholar
  42. 42.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162CrossRefGoogle Scholar
  43. 43.
    Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032CrossRefGoogle Scholar
  44. 44.
    Wang D-W, Zeng Q, Zhou G, Yin L, Li F, Cheng H-M, Gentle IR, Lu GQM (2013) Carbon-sulfur composites for Li-S batteries: status and prospects. J Mater Chem A 1:9382–9394CrossRefGoogle Scholar
  45. 45.
    Manthiram A, Fu Y, Su Y-S (2012) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46:1125–1134CrossRefGoogle Scholar
  46. 46.
    Nagao M, Hayashi A, Tatsumisago M (2013) Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol (Weinheim, Ger.) 1:186–192Google Scholar
  47. 47.
    Zhang SS (2013) Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries. Front Energy Res 1:10. doi: 10.3389/fenrg.2013.00010 Google Scholar
  48. 48.
    Gao J, Lowe MA, Kiya Y, Abruna HD (2011) Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115:25132–25137CrossRefGoogle Scholar
  49. 49.
    Mikhaylik Y, Kovalev I, Schock R, Kumaresan K, Xu J, Affinito J (2010) High energy rechargeable Li-S cells for EV application: status, remaining problems and solutions. ECS Trans 25(35):23–34CrossRefGoogle Scholar
  50. 50.
    Azimi N, Weng W, Takoudis C, Zhang Z (2013) Improved performance of lithium-sulfur battery with fluorinated electrolyte. Electrochem Commun 37:96–99CrossRefGoogle Scholar
  51. 51.
    Zhang SS (2013) New insight into liquid electrolyte of rechargeable lithium/sulfur battery. Electrochim Acta 97:226–230CrossRefGoogle Scholar
  52. 52.
    Mikhaylik YV (2008) Electrolytes for lithium sulfur cells. US Patent 7,354,680Google Scholar
  53. 53.
    Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries. Adv Funct Mater 23:1064–1069CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontUSA
  2. 2.Electrochemistry Branch, RDRL-SED-C, Sensors and Electron Devices DirectorateU.S. Army Research LaboratoryAdelphiUSA

Personalised recommendations