Supramolecular Polymer Networks: Preparation, Properties, and Potential

  • Torsten Rossow
  • Sebastian SeiffertEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 268)


Supramolecular polymer networks consist of macromolecules interconnected by transient, noncovalent bonds such as those through hydrogen bonding, transition metal complexation, hydrophobic interaction, ionic attraction, or π–π stacking. These networks form an extraordinarily useful class of soft, stimuli-sensitive materials. Although they assemble to strong materials under favorable conditions, they are easily disassembled under other conditions. This ambivalent nature renders supramolecular polymer networks useful for applications in drug delivery, tissue engineering, self-healing, and shape-memory materials. These applications require a deep and comprehensive understanding of the physical chemistry of supramolecular networks, with a particular view to the complex interplay between their structure, dynamics, and properties. Approaches that have attempted to derive such knowledge are often based on investigations of supramolecular polymer networks in the melt or of supramolecular polymer networks swollen in organic media. These approaches are reviewed in the first part of this chapter. In the second part, we focus on the preparation and characterization of supramolecular hydrogels based on synthetic and natural precursors and reveal their utility and potential in life science applications.


Supramolecular polymer gels Stimuli-responsive materials Noncovalent interactions Supramolecular network dynamics Self-assembly 


  1. 1.
    Lehn J-M (1988) Angew Chem Int Ed Engl 27:89–112Google Scholar
  2. 2.
    Lehn J-M (1990) Angew Chem Int Ed Engl 29:1304–1319Google Scholar
  3. 3.
    Lehn J-M (2002) Polym Int 51:825–839Google Scholar
  4. 4.
    Wojtecki RJ, Meador MA, Rowan SJ (2011) Nat Mater 10:14–27Google Scholar
  5. 5.
    Schneider H-J, Yatsimirsky AK (2008) Chem Soc Rev 37:263–277Google Scholar
  6. 6.
    Lawrence DS, Jiang T, Levett M (1995) Chem Rev 95:2229–2260Google Scholar
  7. 7.
    Martell AE, Hancock RD, Motekaitis RJ (1994) Coord Chem Rev 133:39–65Google Scholar
  8. 8.
    Zeng F, Zimmerman SC (1997) Chem Rev 97:1681–1712Google Scholar
  9. 9.
    Moore JS (1999) Curr Opin Colloid Interface Sci 4:108–116Google Scholar
  10. 10.
    Aida T, Meijer EW, Stupp SI (2012) Science 335:813–817Google Scholar
  11. 11.
    Schubert US, Eschbaumer C (2002) Angew Chem Int Ed 41:2892–2926Google Scholar
  12. 12.
    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071–4098Google Scholar
  13. 13.
    De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW (2009) Chem Rev 109:5687–5754Google Scholar
  14. 14.
    Fox JD, Rowan SJ (2009) Macromolecules 42:6823–6835Google Scholar
  15. 15.
    Sangeetha NM, Maitra U (2005) Chem Soc Rev 34:821–836Google Scholar
  16. 16.
    Dastidar P (2008) Chem Soc Rev 37:2699–2715Google Scholar
  17. 17.
    Piepenbrock M-OM, Lloyd GO, Clarke N, Steed JW (2009) Chem Rev 110:1960–2004Google Scholar
  18. 18.
    Smith DK (2010) Nat Chem 2:162–163Google Scholar
  19. 19.
    Noro A, Hayashi M, Matsushita Y (2012) Soft Matter 8:6416–6429Google Scholar
  20. 20.
    Seiffert S, Sprakel J (2012) Chem Soc Rev 41:909–930Google Scholar
  21. 21.
    Binder WH, Zirbs R (2007) Adv Polym Sci 207:1–78Google Scholar
  22. 22.
    Yu X, Samanta B, Xu H, Arumugam P, Ofir Y, Jordan BJ, Rotello VM (2009) Small 5:86–89Google Scholar
  23. 23.
    Boyd ASF, Carroll JB, Cooke G, Garety JF, Jordan BJ, Mabruk S, Rosair G, Rotello VM (2005) Chem Commun 2005(19):2468–2470Google Scholar
  24. 24.
    Whittell GR, Hager MD, Schubert US, Manners I (2011) Nat Mater 10:176–188Google Scholar
  25. 25.
    Lohmeijer BGG, Schubert US (2003) J Polym Sci A Polym Chem 41:1413–1427Google Scholar
  26. 26.
    Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Macromolecules 44:4997–5005Google Scholar
  27. 27.
    Shao H, Parquette JR (2010) Chem Commun 46:4285–4287Google Scholar
  28. 28.
    Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, Hayes W, Mackay ME, Rowan SJ (2009) Chem Commun 2009(44):6717–6719Google Scholar
  29. 29.
    Burattini S, Greenland BW, Merino DH, Weng W, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) J Am Chem Soc 132:12051–12058Google Scholar
  30. 30.
    Varshey DB, Sander JRG, Friščić T, MacGillivray LR (2012) Supramolecular interactions. In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials, vol 1. Wiley, New York, pp 9–24Google Scholar
  31. 31.
    Grassi G, Farra R, Caliceti P, Guarnieri G, Salmaso S, Carenza M, Grassi M (2005) Am J Drug Deliv 3:239–251Google Scholar
  32. 32.
    Lemmers M, Sprakel J, Voets IK, van der Gucht J, Cohen Stuart MA (2010) Angew Chem Int Ed 49:708–711Google Scholar
  33. 33.
    Rossow T, Hackelbusch S, van Assenbergh P, Seiffert S (2013) Polym Chem 4:2515–2527Google Scholar
  34. 34.
    Asoh T-A, Yoshitake H, Takano Y, Kikuchi A (2013) Macromol Chem Phys 214:2534–2539Google Scholar
  35. 35.
    Zhang Y, Zhang W, Li J, Dang J, Wei T (2012) Mater Lett 82:227–229Google Scholar
  36. 36.
    Qiu Y, Park K (2001) Adv Drug Del Rev 53:321–339Google Scholar
  37. 37.
    Dankers PYW, Meijer EW (2007) Bull Chem Soc Jpn 80:2047–2073Google Scholar
  38. 38.
    Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Nature 451:977–980Google Scholar
  39. 39.
    Murphy EB, Wudl F (2010) Prog Polym Sci 35:223–251Google Scholar
  40. 40.
    Li J, Viveros JA, Wrue MH, Anthamatten M (2007) Adv Mater 19:2851–2855Google Scholar
  41. 41.
    West JL, Hubbell JA (1995) Biomaterials 16:1153–1156Google Scholar
  42. 42.
    Osada K, Kataoka K (2006) Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers. In: Klok H-A, Schlaad H (eds) Peptide hybrid polymers, vol 202. Springer, Berlin, pp 113–153Google Scholar
  43. 43.
    Alves M-H, Jensen BEB, Smith AAA, Zelikin AN (2011) Macromol Biosci 11:1293–1313Google Scholar
  44. 44.
    Abdel-Mottaleb MMA, Mortada ND, El-Shamy AA, Awad GAS (2009) Drug Dev Ind Pharm 35:311–320Google Scholar
  45. 45.
    Hassan C, Peppas N (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Biopolymers · PVA hydrogels, anionic polymerisation nanocomposites. Advances in Polymer Science, vol 153. Springer, Berlin, pp 37–65Google Scholar
  46. 46.
    Radowski MR, Shukla A, von Berlepsch H, Böttcher C, Pickaert G, Rehage H, Haag R (2007) Angew Chem Int Ed 46:1265–1269Google Scholar
  47. 47.
    Zieringer M, Wyszogrodzka M, Biskup K, Haag R (2012) New J Chem 36:402–406Google Scholar
  48. 48.
    Merschky M, Wyszogrodzka M, Haag R, Schmuck C (2010) Chem Eur J 16:14242–14246Google Scholar
  49. 49.
    Lee KY, Mooney DJ (2001) Chem Rev 101:1869–1880Google Scholar
  50. 50.
    Raz N, Li JK, Fiddes LK, Tumarkin E, Walker GC, Kumacheva E (2010) Macromolecules 43:7277–7281Google Scholar
  51. 51.
    George M, Abraham TE (2006) J Control Release 114:1–14Google Scholar
  52. 52.
    Smidsrød O (1990) Trends Biotechnol 8:71–78Google Scholar
  53. 53.
    Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA, Walker GC, Kumacheva E (2006) J Am Chem Soc 128:12205–12210Google Scholar
  54. 54.
    Ishida K, Kuroda R, Miwa M, Tabata Y, Hokugo A, Kawamoto T, Sasaki K, Doita M, Kurosaka M (2007) Tissue Eng 13:1103–1112Google Scholar
  55. 55.
    Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A (2007) Biomaterials 28:3478–3488Google Scholar
  56. 56.
    Van Vlierberghe S, Dubruel P, Schacht E (2011) Biomacromolecules 12:1387–1408Google Scholar
  57. 57.
    Perez-Castillejos R (2010) Mater Today 13:32–41Google Scholar
  58. 58.
    Fu S, Thacker A, Sperger D, Boni R, Velankar S, Munson E, Block L (2011) AAPS Pharm Sci Tech 12:449–449Google Scholar
  59. 59.
    Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Cancer Cell 8:241–254Google Scholar
  60. 60.
    Ota T, Gilbert TW, Schwartzman D, McTiernan CF, Kitajima T, Ito Y, Sawa Y, Badylak SF, Zenati MA (2008) J Thorac Cardiovasc Surg 136:1309–1317Google Scholar
  61. 61.
    Prins LJ, Reinhoudt DN, Timmerman P (2001) Angew Chem Int Ed 40:2382–2426Google Scholar
  62. 62.
    Armstrong G, Buggy M (2005) J Mater Sci 40:547–559Google Scholar
  63. 63.
    Wilson AJ (2007) Soft Matter 3:409–425Google Scholar
  64. 64.
    Sherrington DC, Taskinen KA (2001) Chem Soc Rev 30:83–93Google Scholar
  65. 65.
    Cooke G, Rotello VM (2002) Chem Soc Rev 31:275–286Google Scholar
  66. 66.
    Binder W, Zirbs R (2007) Supramolecular polymers and networkswith hydrogen bonds in the main- and side-chain. In: Binder W (ed) Hydrogen bonded polymers, vol 207. Springer, Berlin, pp 1–78Google Scholar
  67. 67.
    Nernst W (1891) Z Phys Chem 8:110–139Google Scholar
  68. 68.
    Bernal JD, Megaw HD (1935) Proc R Soc Lond A 151:384–420Google Scholar
  69. 69.
    Huggins ML (1936) J Org Chem 01:407–456Google Scholar
  70. 70.
    Murray TJ, Zimmerman SC (1992) J Am Chem Soc 114:4010–4011Google Scholar
  71. 71.
    Jorgensen WL, Pranata J (1990) J Am Chem Soc 112:2008–2010Google Scholar
  72. 72.
    Pranata J, Wierschke SG, Jorgensen WL (1991) J Am Chem Soc 113:2810–2819Google Scholar
  73. 73.
    Sartorius J, Schneider H-J (1996) Chem Eur J 2:1446–1452Google Scholar
  74. 74.
    Stadler R, Lucca Freitas L (1986) Colloid Polym Sci 264:773–778Google Scholar
  75. 75.
    De Lucca Freitas LL, Stadler R (1987) Macromolecules 20:2478–2485Google Scholar
  76. 76.
    Lucca Freitas L, Stadler R (1988) Colloid Polym Sci 266:1095–1101Google Scholar
  77. 77.
    Beijer FH, Sijbesma RP, Kooijman H, Spek AL, Meijer EW (1998) J Am Chem Soc 120:6761–6769Google Scholar
  78. 78.
    Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, Lowe JKL, Meijer EW (1997) Science 278:1601–1604Google Scholar
  79. 79.
    Beijer FH, Kooijman H, Spek AL, Sijbesma RP, Meijer EW (1998) Angew Chem Int Ed 37:75–78Google Scholar
  80. 80.
    Cates ME (1987) Macromolecules 20:2289–2296Google Scholar
  81. 81.
    Cates ME, Candau SJ (1990) J Phys Condens Matter 2:6869–6892Google Scholar
  82. 82.
    Cates ME (1988) J Phys France 49:1593–1600Google Scholar
  83. 83.
    Knoben W, Besseling NAM, Bouteiller L, Cohen Stuart MA (2005) Phys Chem Chem Phys 7:2390–2398Google Scholar
  84. 84.
    Knoben W, Besseling NAM, Cohen Stuart MA (2007) J Chem Phys 126:024907Google Scholar
  85. 85.
    Vermonden T, van Steenbergen MJ, Besseling NAM, Marcelis ATM, Hennink WE, Sudhölter EJR, Cohen Stuart MA (2004) J Am Chem Soc 126:15802–15808Google Scholar
  86. 86.
    van der Gucht J, Besseling NAM, Knoben W, Bouteiller L, Cohen Stuart MA (2003) Phys Rev E 67:051106Google Scholar
  87. 87.
    Sprakel J, van der Gucht J, Cohen Stuart MA, Besseling NAM (2008) Phys Rev E 77:061502Google Scholar
  88. 88.
    Lange RFM, Van Gurp M, Meijer EW (1999) J Polym Sci A Polym Chem 37:3657–3670Google Scholar
  89. 89.
    Hirschberg JHKK, Beijer FH, van Aert HA, Magusin PCMM, Sijbesma RP, Meijer EW (1999) Macromolecules 32:2696–2705Google Scholar
  90. 90.
    Botterhuis NE, van Beek DJM, van Gemert GML, Bosman AW, Sijbesma RP (2008) J Polym Sci A Polym Chem 46:3877–3885Google Scholar
  91. 91.
    Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW (2000) Adv Mater 12:874–878Google Scholar
  92. 92.
    Kautz H, van Beek DJM, Sijbesma RP, Meijer EW (2006) Macromolecules 39:4265–4267Google Scholar
  93. 93.
    Rieth LR, Eaton RF, Coates GW (2001) Angew Chem Int Ed 40:2153–2156Google Scholar
  94. 94.
    Yamauchi K, Lizotte JR, Long TE (2003) Macromolecules 36:1083–1088Google Scholar
  95. 95.
    Elkins CL, Park T, McKee MG, Long TE (2005) J Polym Sci A Polym Chem 43:4618–4631Google Scholar
  96. 96.
    McKee MG, Elkins CL, Park T, Long TE (2005) Macromolecules 38:6015–6023Google Scholar
  97. 97.
    Feldman KE, Kade MJ, Meijer EW, Hawker CJ, Kramer EJ (2009) Macromolecules 42:9072–9081Google Scholar
  98. 98.
    Sijbesma RP, Meijer EW (2003) Chem Commun 5–16Google Scholar
  99. 99.
    Park T, Zimmerman SC, Nakashima S (2005) J Am Chem Soc 127:6520–6521Google Scholar
  100. 100.
    Park T, Zimmerman SC (2006) J Am Chem Soc 128:14236–14237Google Scholar
  101. 101.
    Park T, Zimmerman SC (2006) J Am Chem Soc 128:11582–11590Google Scholar
  102. 102.
    Wang X-Z, Li X-Q, Shao X-B, Zhao X, Deng P, Jiang X-K, Li Z-T, Chen Y-Q (2003) Chem Eur J 9:2904–2913Google Scholar
  103. 103.
    Nair KP, Breedveld V, Weck M (2008) Macromolecules 41:3429–3438Google Scholar
  104. 104.
    Herbst F, Schröter K, Gunkel I, Gröger S, Thurn-Albrecht T, Balbach J, Binder WH (2010) Macromolecules 43:10006–10016Google Scholar
  105. 105.
    Wietor J-L, van Beek DJM, Peters GW, Mendes E, Sijbesma RP (2011) Macromolecules 44:1211–1219Google Scholar
  106. 106.
    Sivakova S, Bohnsack DA, Mackay ME, Suwanmala P, Rowan SJ (2005) J Am Chem Soc 127:18202–18211Google Scholar
  107. 107.
    Colombani O, Barioz C, Bouteiller L, Chanéac C, Fompérie L, Lortie F, Montès H (2005) Macromolecules 38:1752–1759Google Scholar
  108. 108.
    Falender JR, Yeh GSY, Mark JE (1979) J Am Chem Soc 101:7353–7356Google Scholar
  109. 109.
    Falender JR, Yeh GSY, Mark JE (1979) Macromolecules 12:1207–1209Google Scholar
  110. 110.
    Mark JE, Andrady AL (1981) Rubber Chem Technol 54:366–373Google Scholar
  111. 111.
    Tang MY, Mark JE (1984) Macromolecules 17:2616–2619Google Scholar
  112. 112.
    Mark JE, Tang MY (1984) J Polym Sci Polym Phys Ed 22:1849–1855Google Scholar
  113. 113.
    Di Lorenzo F, Seiffert S (2014) Macromol Chem Phys 215:2097–2111Google Scholar
  114. 114.
    Nair KP, Breedveld V, Weck M (2011) Soft Matter 7:553–559Google Scholar
  115. 115.
    Ilhan F, Galow TH, Gray M, Clavier G, Rotello VM (2000) J Am Chem Soc 122:5895–5896Google Scholar
  116. 116.
    Uzun O, Sanyal A, Nakade H, Thibault RJ, Rotello VM (2004) J Am Chem Soc 126:14773–14777Google Scholar
  117. 117.
    Thibault RJ, Galow TH, Turnberg EJ, Gray M, Hotchkiss PJ, Rotello VM (2002) J Am Chem Soc 124:15249–15254Google Scholar
  118. 118.
    Thibault RJ, Hotchkiss PJ, Gray M, Rotello VM (2003) J Am Chem Soc 125:11249–11252Google Scholar
  119. 119.
    Drechsler U, Thibault RJ, Rotello VM (2002) Macromolecules 35:9621–9623Google Scholar
  120. 120.
    Noro A, Matsushita Y, Lodge TP (2009) Macromolecules 42:5802–5810Google Scholar
  121. 121.
    Fages F (2006) Angew Chem Int Ed 45:1680–1682Google Scholar
  122. 122.
    Brassinne J, Fustin C-A, Gohy J-F (2013) J Inorg Organomet Polym Mater 23:24–40Google Scholar
  123. 123.
    Hofmeier H, Schubert US (2004) Chem Soc Rev 33:373–399Google Scholar
  124. 124.
    Hofmeier H, Schubert US (2003) Macromol Chem Phys 204:1391–1397Google Scholar
  125. 125.
    Calzia KJ, Tew GN (2002) Macromolecules 35:6090–6093Google Scholar
  126. 126.
    Meier MAR, Schubert US (2003) J Polym Sci A Polym Chem 41:2964–2973Google Scholar
  127. 127.
    Ott C, Ulbricht C, Hoogenboom R, Schubert US (2012) Macromol Rapid Commun 33:556–561Google Scholar
  128. 128.
    Schmatloch S, Schubert US (2003) Macromol Symp 199:483–498Google Scholar
  129. 129.
    El-ghayoury A, Hofmeier H, de Ruiter B, Schubert US (2003) Macromolecules 36:3955–3959Google Scholar
  130. 130.
    Kokil A, Yao P, Weder C (2005) Macromolecules 38:3800–3807Google Scholar
  131. 131.
    Meudtner RM, Hecht S (2008) Macromol Rapid Commun 29:347–351Google Scholar
  132. 132.
    Meudtner RM, Ostermeier M, Goddard R, Limberg C, Hecht S (2007) Chem Eur J 13:9834–9840Google Scholar
  133. 133.
    Yuan J, Fang X, Zhang L, Hong G, Lin Y, Zheng Q, Xu Y, Ruan Y, Weng W, Xia H, Chen G (2012) J Mater Chem 22:11515–11522Google Scholar
  134. 134.
    Beck JB, Rowan SJ (2003) J Am Chem Soc 125:13922–13923Google Scholar
  135. 135.
    Zhao Y, Beck JB, Rowan SJ, Jamieson AM (2004) Macromolecules 37:3529–3531Google Scholar
  136. 136.
    Rowan SJ, Beck JB (2005) Faraday Discuss 128:43–53Google Scholar
  137. 137.
    Weng W, Beck JB, Jamieson AM, Rowan SJ (2006) J Am Chem Soc 128:11663–11672Google Scholar
  138. 138.
    Weng W, Jamieson AM, Rowan SJ (2007) Tetrahedron 63:7419–7431Google Scholar
  139. 139.
    Weng W, Li Z, Jamieson AM, Rowan SJ (2008) Macromolecules 42:236–246Google Scholar
  140. 140.
    Weng W, Li Z, Jamieson AM, Rowan SJ (2009) Soft Matter 5:4647–4657Google Scholar
  141. 141.
    Pollino JM, Nair KP, Stubbs LP, Adams J, Weck M (2004) Tetrahedron 60:7205–7215Google Scholar
  142. 142.
    Nair KP, Breedveld V, Weck M (2011) Macromolecules 44:3346–3357Google Scholar
  143. 143.
    Yount WC, Loveless DM, Craig SL (2005) J Am Chem Soc 127:14488–14496Google Scholar
  144. 144.
    Yount WC, Loveless DM, Craig SL (2005) Angew Chem Int Ed 44:2746–2748Google Scholar
  145. 145.
    Noro A, Matsushima S, He X, Hayashi M, Matsushita Y (2013) Macromolecules 46:8304–8310Google Scholar
  146. 146.
    Kumpfer JR, Wie JJ, Swanson JP, Beyer FL, Mackay ME, Rowan SJ (2011) Macromolecules 45:473–480Google Scholar
  147. 147.
    Serpe MJ, Craig SL (2007) Langmuir 23:1626–1634Google Scholar
  148. 148.
    Yount WC, Juwarker H, Craig SL (2003) J Am Chem Soc 125:15302–15303Google Scholar
  149. 149.
    Loveless DM, Jeon SL, Craig SL (2005) Macromolecules 38:10171–10177Google Scholar
  150. 150.
    Spruijt E, Sprakel J, Lemmers M, Stuart MAC, van der Gucht J (2010) Phys Rev Lett 105:208301Google Scholar
  151. 151.
    Hofmeier H, Hoogenboom R, Wouters MEL, Schubert US (2005) J Am Chem Soc 127:2913–2921Google Scholar
  152. 152.
    Appel EA, Biedermann F, Rauwald U, Jones ST, Zayed JM, Scherman OA (2010) J Am Chem Soc 132:14251–14260Google Scholar
  153. 153.
    Lewis CL, Stewart K, Anthamatten M (2014) Macromolecules 47:729–740Google Scholar
  154. 154.
    Paulusse JMJ, van Beek DJM, Sijbesma RP (2007) J Am Chem Soc 129:2392–2397Google Scholar
  155. 155.
    Dankers PYW, Hermans TM, Baughman TW, Kamikawa Y, Kieltyka RE, Bastings MMC, Janssen HM, Sommerdijk NAJM, Larsen A, van Luyn MJA, Bosman AW, Popa ER, Fytas G, Meijer EW (2012) Adv Mater 24:2703–2709Google Scholar
  156. 156.
    Dankers PYW, van Luyn MJA, der Huizinga-van Vlag A, van Gemert GML, Petersen AH, Meijer EW, Janssen HM, Bosman AW, Popa ER (2012) Biomaterials 33:5144–5155Google Scholar
  157. 157.
    Kieltyka RE, Pape ACH, Albertazzi L, Nakano Y, Bastings MMC, Voets IK, Dankers PYW, Meijer EW (2013) J Am Chem Soc 135:11159–11164Google Scholar
  158. 158.
    Song G, Zhang L, He C, Fang D-C, Whitten PG, Wang H (2013) Macromolecules 46:7423–7435Google Scholar
  159. 159.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358–3393Google Scholar
  160. 160.
    Chang C, Zhang L (2011) Carbohydr Polym 84:40–53Google Scholar
  161. 161.
    Xiao C (2013) Starch – Stärke 65:82–88Google Scholar
  162. 162.
    Fernández E, López D, Mijangos C, Duskova-Smrckova M, Ilavsky M, Dusek K (2008) J Polym Sci B Polym Phys 46:322–328Google Scholar
  163. 163.
    Fernández E, Hernández R, Teresa Cuberes M, Mijangos C, López D (2010) J Polym Sci B Polym Phys 48:2403–2412Google Scholar
  164. 164.
    Van Tomme SR, Hennink WE (2007) Expert Rev Med Devices 4:147–164Google Scholar
  165. 165.
    de Jong SJ, van Eerdenbrugh B, van Nostrum CF, den Kettenes-van Bosch JJ, Hennink WEJ (2001) Control Release 71:261–275Google Scholar
  166. 166.
    Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Prog Polym Sci 26:1605–1688Google Scholar
  167. 167.
    Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Langmuir 17:8062–8068Google Scholar
  168. 168.
    Chang C, Lue A, Zhang L (2008) Macromol Chem Phys 209:1266–1273Google Scholar
  169. 169.
    Dave V, Tamagno M, Focher B, Marsano E (1995) Macromolecules 28:3531–3539Google Scholar
  170. 170.
    Takegawa A, Murakami M-a, Kaneko Y, Kadokawa J-i (2010) Carbohydr Polym 79:85–90Google Scholar
  171. 171.
    Liu Z, Wang H, Li B, Liu C, Jiang Y, Yu G, Mu X (2012) J Mater Chem 22:15085–15091Google Scholar
  172. 172.
    Pourjavadi A, Barzegar S, Mahdavinia GR (2006) Carbohydr Polym 66:386–395Google Scholar
  173. 173.
    Gupta D, Tator CH, Shoichet MS (2006) Biomaterials 27:2370–2379Google Scholar
  174. 174.
    Caicco MJ, Zahir T, Mothe AJ, Ballios BG, Kihm AJ, Tator CH, Shoichet MS (2013) J Biomed Mater Res A 101A:1472–1477Google Scholar
  175. 175.
    Wang Y, Lapitsky Y, Kang CE, J. Shoichet MS (2009) Control Release 140:218–223Google Scholar
  176. 176.
    Fiore GL, Klinkenberg JL, Pfister A, Fraser CL (2008) Biomacromolecules 10:128–133Google Scholar
  177. 177.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Science 318:426–430Google Scholar
  178. 178.
    Lee H, Scherer NF, Messersmith PB (2006) Proc Natl Acad Sci USA 103:12999–13003Google Scholar
  179. 179.
    Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) Proc Natl Acad Sci USA 108:2651–2655Google Scholar
  180. 180.
    Avdeef A, Sofen SR, Bregante TL, Raymond KN (1978) J Am Chem Soc 100:5362–5370Google Scholar
  181. 181.
    Menyo MS, Hawker CJ, Waite JH (2013) Soft Matter 9:10314–10323Google Scholar
  182. 182.
    Peng F, Li G, Liu X, Wu S, Tong Z (2008) J Am Chem Soc 130:16166–16167Google Scholar
  183. 183.
    Spychaj T, Schmidt B (2000) Macromol Symp 152:173–189Google Scholar
  184. 184.
    Augst AD, Kong HJ, Mooney DJ (2006) Macromol Biosci 6:623–633Google Scholar
  185. 185.
    Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ (2000) Macromolecules 33:4291–4294Google Scholar
  186. 186.
    Shapiro L, Cohen S (1997) Biomaterials 18:583–590Google Scholar
  187. 187.
    Liew CV, Chan LW, Ching AL, Heng PWS (2006) Int J Pharm 309:25–37Google Scholar
  188. 188.
    Hashimoto T, Suzuki Y, Tanihara M, Kakimaru Y, Suzuki K (2004) Biomaterials 25:1407–1414Google Scholar
  189. 189.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Biomaterials 20:45–53Google Scholar
  190. 190.
    Nunamaker EA, Purcell EK, Kipke DR (2007) J Biomed Mater Res A 83A:1128–1137Google Scholar
  191. 191.
    Boontheekul T, Kong H-J, Mooney DJ (2005) Biomaterials 26:2455–2465Google Scholar
  192. 192.
    Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) Acta Biomater 7:152–162Google Scholar
  193. 193.
    Kang S-W, Cha B-H, Park H, Park K-S, Lee KY, Lee S-H (2011) Macromol Biosci 11:673–679Google Scholar
  194. 194.
    Bidarra SJ, Barrias CC, Fonseca KB, Barbosa MA, Soares RA, Granja PL (2011) Biomaterials 32:7897–7904Google Scholar
  195. 195.
    Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth J-O, Novikov LN (2006) J Biomed Mater Res A 77A:242–252Google Scholar
  196. 196.
    Kim G, Ahn S, Kim Y, Cho Y, Chun W (2011) J Mater Chem 21:6165–6172Google Scholar
  197. 197.
    Appel EA, del Barrio J, Loh XJ, Scherman OA (2012) Chem Soc Rev 41:6195–6214Google Scholar
  198. 198.
    Steed JW, Atwood JL (2009) Supramolecular polymers, gels and fibres. In: Supramolecular chemistry (2nd edn). Wiley, Chichester, pp 861–897.Google Scholar
  199. 199.
    Zheng B, Wang F, Dong S, Huang F (2012) Chem Soc Rev 41:1621–1636Google Scholar
  200. 200.
    Gokel GW, Leevy WM, Weber ME (2004) Chem Rev 104:2723–2750Google Scholar
  201. 201.
    Drain CM, Varotto A, Radivojevic I (2009) Chem Rev 109:1630–1658Google Scholar
  202. 202.
    Li W-S, Aida T (2009) Chem Rev 109:6047–6076Google Scholar
  203. 203.
    Ramaiah D, Neelakandan PP, Nair AK, Avirah RR (2010) Chem Soc Rev 39:4158–4168Google Scholar
  204. 204.
    Evans NH, Beer PD (2014) Chem Soc Rev 43:4658–4683Google Scholar
  205. 205.
    Sliwa W, Deska M (2002) Chem Heterocycl Compd 38:646–667Google Scholar
  206. 206.
    Hooley RJ, Rebek J Jr (2009) Chem Biol 16:255–264Google Scholar
  207. 207.
    Hardie MJ (2012) Cyclotriveratrylene and cryptophanes. In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials, vol 3. Wiley, New York, pp 895-916Google Scholar
  208. 208.
    Nimse SB, Kim T (2013) Chem Soc Rev 42:366–386Google Scholar
  209. 209.
    Warmuth R (2012) Carcerands and hemicarcerands. In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials, vol 3. Wiley, New York, pp 917-954Google Scholar
  210. 210.
    Li J (2009) Cyclodextrin inclusion polymers forming hydrogels. In: Wenz G (ed) Inclusion polymers, vol 222. Springer, Berlin, pp 175–203Google Scholar
  211. 211.
    Chen G, Jiang M (2011) Chem Soc Rev 40:2254–2266Google Scholar
  212. 212.
    Harada A, Takashima Y, Yamaguchi H (2009) Chem Soc Rev 38:875–882Google Scholar
  213. 213.
    Chen Y, Liu Y (2010) Chem Soc Rev 39:495–505Google Scholar
  214. 214.
    Kim K, Selvapalam N, Ko YH, Park KM, Kim D, Kim J (2007) Chem Soc Rev 36:267–279Google Scholar
  215. 215.
    Ni X-L, Xiao X, Cong H, Liang L-L, Cheng K, Cheng X-J, Ji N-N, Zhu Q-J, Xue S-F, Tao Z (2013) Chem Soc Rev 42:9480–9508Google Scholar
  216. 216.
    Liu Y, Yang H, Wang Z, Zhang X (2013) Chem Asian J 8:1626–1632Google Scholar
  217. 217.
    Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Nat Commun 2:511Google Scholar
  218. 218.
    Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) J Am Chem Soc 127:15959–15967Google Scholar
  219. 219.
    Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844–4870Google Scholar
  220. 220.
    FDA (2000) GRAS Notice No. GRN 000046, gamma-cyclodextrinGoogle Scholar
  221. 221.
    Li J, Harada A, Kamachi M (1994) Polym J 26:1019–1026Google Scholar
  222. 222.
    Li J (2010) NPG Asia Mater 2:112–118Google Scholar
  223. 223.
    Liu KL, Zhang Z, Li J (2011) Soft Matter 7:11290–11297Google Scholar
  224. 224.
    Li J, Loh XJ (2008) Adv Drug Del Rev 60:1000–1017Google Scholar
  225. 225.
    Joung YK, Ooya T, Yamaguchi M, Yui N (2007) Adv Mater 19:396–400Google Scholar
  226. 226.
    Kretschmann O, Choi SW, Miyauchi M, Tomatsu I, Harada A, Ritter H (2006) Angew Chem Int Ed 45:4361–4365Google Scholar
  227. 227.
    Hetzer M, Schmidt BVKJ, Barner-Kowollik C, Ritter H (2014) Polym Chem 5:2142–2152Google Scholar
  228. 228.
    Charlot A, Auzély-Velty R (2007) Macromolecules 40:9555–9563Google Scholar
  229. 229.
    Koopmans C, Ritter H (2008) Macromolecules 41:7418–7422Google Scholar
  230. 230.
    Hwang J, Rodgers K, Oliver JC, Schluep T (2008) Int J Nanomed 3:359–371Google Scholar
  231. 231.
    Davis ME, Brewster ME (2004) Nat Rev Drug Discov 3:1023–1035Google Scholar
  232. 232.
    Lee MS, Kim J-C (2014) Polym Int 63:989–996Google Scholar
  233. 233.
    Tomatsu I, Hashidzume A, Harada A (2006) Macromol Rapid Commun 27:238–241Google Scholar
  234. 234.
    Peng K, Tomatsu I, Kros A (2010) Chem Commun 46:4094–4096Google Scholar
  235. 235.
    Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A (2010) Angew Chem Int Ed 49:7461–7464Google Scholar
  236. 236.
    Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) Nature 463:339–343Google Scholar
  237. 237.
    Tamesue S, Ohtani M, Yamada K, Ishida Y, Spruell JM, Lynd NA, Hawker CJ, Aida T (2013) J Am Chem Soc 135:15650–15655Google Scholar
  238. 238.
    Appel EA, Loh XJ, Jones ST, Biedermann F, Dreiss CA, Scherman OA (2012) J Am Chem Soc 134:11767–11773Google Scholar
  239. 239.
    Appel EA, Loh XJ, Jones ST, Dreiss CA, Scherman OA (2012) Biomaterials 33:4646–4652Google Scholar
  240. 240.
    Park KM, Yang J-A, Jung H, Yeom J, Park JS, Park K-H, Hoffman AS, Hahn SK, Kim K (2012) ACS Nano 6:2960–2968Google Scholar
  241. 241.
    Berger J, Reist M, Mayer J, Felt O, Peppas N, Gurny R (2004) Eur J Pharm Biopharm 57:19–34Google Scholar
  242. 242.
    Berger J, Reist M, Mayer J, Felt O, Gurny R (2004) Eur J Pharm Biopharm 57:35–52Google Scholar
  243. 243.
    Cohen Stuart MA, Hofs B, Voets IK, de Keizer A (2005) Curr Opin Colloid Interface Sci 10:30–36Google Scholar
  244. 244.
    Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM, Spruell JM, Hernandez BM, Kramer EJ, Hawker CJ (2011) Adv Mater 23:2327–2331Google Scholar
  245. 245.
    Krogstad DV, Lynd NA, Choi S-H, Spruell JM, Hawker CJ, Kramer EJ, Tirrell MV (2013) Macromolecules 46:1512–1518Google Scholar
  246. 246.
    Sashiwa H, Aiba S-i (2004) Prog Polym Sci 29:887–908Google Scholar
  247. 247.
    Bhattarai N, Gunn J, Zhang M (2010) Adv Drug Del Rev 62:83–99Google Scholar
  248. 248.
    Anchisi C, Meloni MC, Maccioni AM (2007) Int J Cosmetic Sci 29:485–485Google Scholar
  249. 249.
    Giri TK, Thakur A, Alexander A, Ajazuddin, Badwaik H, Tripathi DK (2012) Acta Pharm Sin B 2:439–449Google Scholar
  250. 250.
    Dumitriu S, Magny P, Montane D, Vidal P, Chornet E (1994) J Bioact Compat Polym 9:184–209Google Scholar
  251. 251.
    Tan H, Chu CR, Payne KA, Marra KG (2009) Biomaterials 30:2499–2506Google Scholar
  252. 252.
    Dai Y-N, Li P, Zhang J-P, Wang A-Q, Wei Q (2008) Biopharm Drug Dispos 29:173–184Google Scholar
  253. 253.
    Reis LA, Chiu LLY, Liang Y, Hyunh K, Momen A, Radisic M (2012) Acta Biomater 8:1022–1036Google Scholar
  254. 254.
    Harvestine JN, Mikulski BA, Mahuta KM, Crouse JZ, Guo X, Lee JC, Midelfort KS, Chen J, Zhang W (2014) Part Part Syst Charact 31:955–959Google Scholar
  255. 255.
    Jătariu AN, Danu M, Peptu CA, Ioanid G, Ibanescu C, Popa M (2011) Soft Mater 11:45–54Google Scholar
  256. 256.
    Magnin D, Lefebvre J, Chornet E, Dumitriu S (2004) Carbohydr Polym 55:437–453Google Scholar
  257. 257.
    Dumitriu S, Chornet E (1997) Biotechnol Prog 13:539–545Google Scholar
  258. 258.
    Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, Yahia LH (2000) J Biomed Mater Res A 51:107–116Google Scholar
  259. 259.
    Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. In: Dušek K (ed) Responsive gels: volume transitions I, vol 109. Springer, Berlin, pp 1–62Google Scholar
  260. 260.
    Abdurrahmanoglu S, Can V, Okay O (2009) Polymer 50:5449–5455Google Scholar
  261. 261.
    Abdurrahmanoglu S, Cilingir M, Okay O (2011) Polymer 52:694–699Google Scholar
  262. 262.
    Tuncaboylu DC, Sahin M, Argun A, Oppermann W, Okay O (2012) Macromolecules 45:1991–2000Google Scholar
  263. 263.
    Tuncaboylu DC, Argun A, Sahin M, Sari M, Okay O (2012) Polymer 53:5513–5522Google Scholar
  264. 264.
    Argun A, Algi M, Tuncaboylu D, Okay O (2014) Colloid Polym Sci 292:511–517Google Scholar
  265. 265.
    Tian J, Seery TAP, Weiss RA (2004) Macromolecules 37:9994–10000Google Scholar
  266. 266.
    Tian J, Seery TAP, Ho DL, Weiss RA (2004) Macromolecules 37:10001–10008Google Scholar
  267. 267.
    Hao J, Weiss RA (2011) Macromolecules 44:9390–9398Google Scholar
  268. 268.
    Hart LR, Harries JL, Greenland BW, Colquhoun HM, Hayes W (2013) Polym Chem 4:4860–4870Google Scholar
  269. 269.
    Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Nature 472:334–337Google Scholar
  270. 270.
    Bode S, Zedler L, Schacher FH, Dietzek B, Schmitt M, Popp J, Hager MD, Schubert US (2013) Adv Mater 25:1634–1638Google Scholar
  271. 271.
    Bode S, Bose RK, Matthes S, Ehrhardt M, Seifert A, Schacher FH, Paulus RM, Stumpf S, Sandmann B, Vitz J, Winter A, Hoeppener S, Garcia SJ, Spange S, van der Zwaag S, Hager MD, Schubert US (2013) Polym Chem 4:4966–4973Google Scholar
  272. 272.
    Burattini S, Colquhoun HM, Greenland BW, Hayes W (2009) Faraday Discuss 143:251–264Google Scholar
  273. 273.
    Greenland BW, Burattini S, Hayes W, Colquhoun HM (2008) Tetrahedron 64:8346–8354Google Scholar
  274. 274.
    Kumpfer JR, Rowan SJ (2011) J Am Chem Soc 133:12866–12874Google Scholar
  275. 275.
    Chen S, Cao Q, Jing B, Cai Y, Liu P, Hu J (2006) J Appl Polym Sci 102:5224–5231Google Scholar
  276. 276.
    Chen S, Hu J, Liu Y, Liem H, Zhu Y, Liu Y (2007) J Polym Sci B Polym Phys 45:444–454Google Scholar
  277. 277.
    Chen S, Hu J, Zhuo H, Yuen C, Chan L (2010) Polymer 51:240–248Google Scholar
  278. 278.
    Tønnesen HH, Karlsen J (2002) Drug Dev Ind Pharm 28:621–630Google Scholar
  279. 279.
    Haag R (2004) Angew Chem Int Ed 43:278–282Google Scholar
  280. 280.
    Tao C-a, Wang J, Qin S, Lv Y, Long Y, Zhu H, Jiang Z (2012) J Mater Chem 22:24856–24861Google Scholar
  281. 281.
    Bastings MMC, Koudstaal S, Kieltyka RE, Nakano Y, Pape ACH, Feyen DAM, van Slochteren FJ, Doevendans PA, Sluijter JPG, Meijer EW, Chamuleau SAJ, Dankers PYW (2014) Adv Healthcare Mater 3:70–78Google Scholar
  282. 282.
    Ma D, Tu K, Zhang L-M (2010) Biomacromolecules 11:2204–2212Google Scholar
  283. 283.
    Gübeli RJ, Hövermann D, Seitz H, Rebmann B, Schoenmakers RG, Ehrbar M, Charpin-El Hamri G, Daoud-El Baba M, Werner M, Müller M, Weber W (2013) Adv Funct Mater 23:5355–5362Google Scholar
  284. 284.
    Seiffert S (2011) Macromol Rapid Commun 32:1600–1609Google Scholar
  285. 285.
    Seiffert S (2013) Angew Chem Int Ed 52:11462–11468Google Scholar
  286. 286.
    Malmsten M (2011) Microgels in drug delivery. In: Fernandez-Nieves A, Wyss HM, Mattsson J, Weitz DA (eds) Microgel suspensions: fundamentals and applications. Wiley-VCH, Weinheim, pp 375–405Google Scholar
  287. 287.
    Su S, Ali MM, Filipe CDM, Li Y, Pelton R (2008) Biomacromolecules 9:935–941Google Scholar
  288. 288.
    Terashima T (2002) Polymer microgels for catalysis. In: Encyclopedia of polymer science and technology. Wiley, New YorkGoogle Scholar
  289. 289.
    Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Biomaterials 35:4969–4985Google Scholar
  290. 290.
    Khademhosseini A, Langer R, Borenstein J, Vacanti JP (2006) Proc Natl Acad Sci USA 103:2480–2487Google Scholar
  291. 291.
    Tan WH, Takeuchi S (2007) Adv Mater 19:2696–2701Google Scholar
  292. 292.
    Tumarkin E, Tzadu L, Csaszar E, Seo M, Zhang H, Lee A, Peerani R, Purpura K, Zandstra PW, Kumacheva E (2011) Integr Biol 3:653–662Google Scholar
  293. 293.
    Kumachev A, Greener J, Tumarkin E, Eiser E, Zandstra PW, Kumacheva E (2011) Biomaterials 32:1477–1483Google Scholar
  294. 294.
    Sakai S, Ito S, Inagaki H, Hirose K, Matsuyama T, Taya M, Kawakami K (2011) Biomicrofluidics 5:013402Google Scholar
  295. 295.
    Tumarkin E, Kumacheva E (2009) Chem Soc Rev 38:2161–2168Google Scholar
  296. 296.
    Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS (2010) Angew Chem Int Ed 49:5846–5868Google Scholar
  297. 297.
    Wang J-T, Wang J, Han J-J (2011) Small 7:1728–1754Google Scholar
  298. 298.
    Dendukuri D, Doyle PS (2009) Adv Mater 21:4071–4086Google Scholar
  299. 299.
    Martinez CJ, Kim JW, Ye C, Ortiz I, Rowat AC, Marquez M, Weitz D (2012) Macromol Biosci 12:946–951Google Scholar
  300. 300.
    Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, Ohkohchi N, Nakajima M (2005) Biomaterials 26:3327–3331Google Scholar
  301. 301.
    Velasco D, Chau M, Therien-Aubin H, Kumachev A, Tumarkin E, Jia Z, Walker GC, Monteiro MJ, Kumacheva E (2013) Soft Matter 9:2380–2383Google Scholar
  302. 302.
    Anthamatten M (2015) Hydrogen bonding in supramolecular polymer networks: glasses, melts, and elastomers. In: Seiffert S (ed) Supramolecular polymer networks, Advances in Polymer Science. Springer, ChamGoogle Scholar
  303. 303.
    Okay O (2015) Self-healing hydrogels formed via hydrophobic interactions. In: Seiffert S (ed) Supramolecular polymer networks, Advances in Polymer Science. Springer, ChamGoogle Scholar
  304. 304.
    Greenland B, Hayes W (2015) Donor–acceptor π–π stacking interactions: from simple complexes to healable supramolecular polymer networks. In: Seiffert S (ed) Supramolecular polymer networks, Advances in Polymer Science. Springer, ChamGoogle Scholar
  305. 305.
    Chau M, Sriskandha SE, Thérien-Aubin H, Kumacheva E (2015) Supramolecular nanofibrillar polymer hydrogels. In: Seiffert S (ed) Supramolecular polymer networks, Advances in Polymer Science. Springer, ChamGoogle Scholar
  306. 306.
    Li P, Liu R (2015) Cellulose gels and microgels: synthesis, service, and supramolecular interactions. In: Seiffert S (ed) Supramolecular polymer networks, Advances in Polymer Science. Springer, ChamGoogle Scholar
  307. 307.
    Pape A, Dankers P (2015) Supramolecular hydrogels for regenerative medicine. In: Seiffert S (ed) Supramolecular polymer networks, Advances in Polymer Science. Springer, ChamGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Chemistry and BiochemistryFreie Universität BerlinBerlinGermany
  2. 2.Soft Matter and Functional Materials, Helmholtz-Zentrum BerlinBerlinGermany

Personalised recommendations