Skip to main content

Abstract

A nonlinear dynamical system is not a tidy subject, but is vital in engineering practice. “Nonlinear systems are surely the rule, not the exception, not only in research, but also in the engineering world” [1]. The world around us is inherently nonlinear and the most nonlinear phenomena are models of our real-life problems. The most successful class of rules for describing practice phenomena are differential equations. All major theories of engineering are stated in terms of differential equations. Differential equations lie at the basis of scientific mathematical philosophy [2] of our scientific world. This scientific philosophy began with the discovery of the calculus by Newton and Leibnitz and continues to the present days. The first two hundred years of this scientific philosophy, from Newton and Euler, through to Hamilton and Maxwell, produced many stunning successes in formulating the “rules of the world”. Nonlinear differential equations are widely used as models to describe complex physical phenomena in various fields of science as fluid dynamics, solid state physics, heat transfer, vibrations, electrical machines, chemical kinetics and so on. The evolution of some systems can be studied by means of the linear differential equations, but majority of the physics systems do not lead to linear differential equations but to nonlinear differential equations. A system of linear differential equations is one for which the dependent quantities or variables only appear to the first power. If terms are present which involve products of the dependent variables, or other powers or other mathematical forms, the system is said to be nonlinear. A linear dynamical system is one which the dynamic rule is linearly proportional to the system variables. Linear systems can be analyzed by breaking the problem into pieces and then adding these pieces together to build a complete solution. This property of linear differential equations is called the principle of superposition. It is the cornerstone from which all linear theory is built. But, unfortunately, the solutions of a nonlinear equation cannot usually be added together to build a larger solution. The principle of superposition fails to hold for nonlinear systems. A general feature of all nonlinear dynamical equations including nonlinear differential equations is the “breakdown” of linear additivity or superposition. Because of this breakdown, many mathematical techniques (among which Laplace transform, Fourier analysis etc) for solving linear differential equations no longer work or are useful for attempting to solve nonlinear differential equations [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. May, Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  2. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, Berlin, Heidelberg, 1997)

    Google Scholar 

  3. R.E. Enns, It’s a Nonlinear World (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  4. H. Poincare, Les nouvelles methods de la mecanique celeste, Tomm 1, 2 et 3, Paris (1891, 1893, 1894)

    Google Scholar 

  5. J. Rayleigh, The Theory of Sound (Dover, New York, 1945)

    MATH  Google Scholar 

  6. B. Van der Pol, On relaxation oscillations. Philos. Mag. 7, 978–992 (1926)

    Google Scholar 

  7. A. Lienard, Etude des oscillations extremes. Rev. Generale de l’Electricite 23, 901–912 (1928)

    Google Scholar 

  8. N. Bogoliubov, Y. Mitropolski, A.M. Samoilenko, Method of the Acceleration of Convergence in Nonlinear Mechanics (Naukova Dumka, Kiev, 1969)

    Google Scholar 

  9. Y. Mitropolski, The Average Method in Nonlinear Mechanics (Naukova Dumka, Kiev, 1971)

    Google Scholar 

  10. A.A. Andronov, A.A. Witt, S.E. Schaikin, Theory of Oscillations (Pergamon Press, Oxford, 1966)

    Google Scholar 

  11. I.G. Malkin, Some problems of the Theory of Nonlinear Oscillations (Gostehizdat, Moscow, 1956)

    MATH  Google Scholar 

  12. C. Hayashi, Nonlinear Oscillations in Physical Systems (McGraw-Hill, New York, 1964)

    MATH  Google Scholar 

  13. N. Minorsky, Introduction in Nonlinear Mechanics (Edwards, Ann Arbor, MI, 1947)

    Google Scholar 

  14. J.J. Stoker, Nonlinear Vibration in Mechanical and Electrical Systems (Willey, New York, 1950)

    Google Scholar 

  15. N. McLachlan, Theory of Vibration (Dover, New York, 1991)

    Google Scholar 

  16. N. Kauderer, Nichtlinear Mechanic (Springer, Berlin Gotingen, Heidelberg, 1958)

    Book  Google Scholar 

  17. G. Sansone, R. Conti, Nonlinear Differential Equation (Pergamon, Oxford, 1964)

    Google Scholar 

  18. A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Willey, New York, 1974)

    Google Scholar 

  19. P. Hagedorn, Nonlinear Oscillations (Clarendon Press, Oxford, 1981)

    Google Scholar 

  20. A. Einstein, The Theory of Brownian Movement (Dover, New York, 1956)

    MATH  Google Scholar 

  21. S.N. Crandall, W.D. Mark, Random Vibration in Mechanical System (Academic, New York, London, 1963)

    Google Scholar 

  22. C. Mira, Some historical aspects of nonlinear dynamics possible trends for the future. J. Franklin Inst. 334(5–6), 1075–1113 (1997)

    Article  MathSciNet  Google Scholar 

  23. C. Mira, Systemes asservis non lineaires (Hermes, Paris, 1990)

    MATH  Google Scholar 

  24. S.N. Chen, Y.K. Cheung, A modified Lindstedt-Poincare method for strongly non-linear two degree-of-freedom system. J. Sound Vibr. 193, 751–762 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. V.P. Agrawal, N.N. Denman, Weighted linearization technique for period approximation in large amplitude nonlinear oscillations. J. Sound Vibr. 99, 463–473 (1985)

    Article  Google Scholar 

  26. G. Adomian, A review of decomposition method in applied mathematics. J. Math. Anal. Appl. 135, 501–544 (1998)

    Article  MathSciNet  Google Scholar 

  27. J.H. He, Variational iteration method, a kind of nonlinear analytical technique. Some examples. Int. J. Non-linear Mech. 34, 699–708 (1999)

    Article  MATH  Google Scholar 

  28. Y.Y. Wu, S.J. Liao, X.Z. Zhao, Some notes on the general boundary element method for highly nonlinear problems. Commun. Nonlinear. Sci. Numer. Simul. 10, 725–735 (2005)

    Article  MATH  Google Scholar 

  29. V. Marinca, N. Herisanu, Optimal variational method for truly nonlinear oscillators, J. Appl. Math. ID 620267 (2013)

    Google Scholar 

  30. V. Marinca, N. Herisanu, An optimal iteration method for strongly nonlinear oscillators, J. Appl. Math. ID 906341 (2012)

    Google Scholar 

  31. N. Herisanu, V. Marinca, Optimal homotopy perturbation method for a non-conservative dynamical system of a rotating electrical machine. Z. Naturforsh. 67a, 509–516 (2012)

    Google Scholar 

  32. V. Marinca, N. Herisanu, Optimal parametric iteration method for solving multispecies Lotka-Volterra equation, Discr. Dynam. Nat. Soc. ID 842121 (2012)

    Google Scholar 

  33. V. Marinca, N. Herisanu, Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches (Springer, Berlin, Heidelberg, 2011)

    Book  MATH  Google Scholar 

  34. V. Marinca, N. Herisanu, Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass Transf. 35, 710–715 (2008)

    Article  Google Scholar 

  35. V. Marinca, N. Herişanu, I. Nemeş, Optimal homotopy asymptotic method with application to thin film flow. Cent. Eur. J. Phys. 6, 648–653 (2008)

    Article  Google Scholar 

  36. N. Herisanu, V. Marinca, T. Dordea, G. Madescu, A new analytical approach to nonlinear vibration of an electrical machine. Proc. Rom. Acad. Ser. A 9, 229–236 (2008)

    Google Scholar 

  37. V. Marinca, N. Herişanu, C. Bota, B. Marinca, An optimal homotopy asymptotic method applied to the steady flow of a fourth grade fluid past a porous plate. Appl. Math. Lett. 22, 245–251 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. N. Herisanu, V. Marinca, Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of optimal homotopy asymptotic method. Comput. Math. Appl. 60, 1607–1615 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. V. Marinca, N. Herisanu, Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method. J Sound Vibr. 329, 1450–1459 (2010)

    Article  Google Scholar 

  40. N. Herisanu, V. Marinca, Explicit analytical approximation to large-amplitude nonlinear oscillations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. Meccanica 45, 847–855 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. V. Marinca, N. Herisanu, D. Bala, Some optimal approximate methods with application to thin film flow. WSEAS Trans. Syst. 7(9), 744–753 (2010)

    Google Scholar 

  42. V. Marinca, N. Herisanu, An optimal homotopy asymptotic approach to nonlinear MHD Jeffery-Hamel flow, Math. Probl. Eng. Article ID 169056 (2011)

    Google Scholar 

  43. V. Marinca, N. Herisanu, An approximate solution for the nonlinear Lane-Emden type equation on a semi-infinite domain. AIP Conf. Proc. 1479, 2387–2390 (2012)

    Article  Google Scholar 

  44. R.D. Ene, V. Marinca, R. Negrea, B Caruntu, Optimal homotopy asymptotic method for solving a nonlinear problem in elasticity, in 14-th SYNASC-2012 (2012), pp. 98–102

    Google Scholar 

  45. V. Marinca, N. Herisanu, Optimal homotopy asymptotic approach to nonlinear oscillators with discontinuities. Scientific Res. Essays 8(4), 161–167 (2013)

    Google Scholar 

  46. V. Marinca, N. Herisanu, T. Marinca, Approximate solutions to a cantilever beam using optimal homotopy asymptotic method. Appl. Mech. Mater. 430, 22–26 (2013)

    Article  Google Scholar 

  47. N. Herisanu, V. Marinca, Oprimal homotopy asymptotic approach to self-excited vibrations. Appl. Mech. Mater. 430, 27–31 (2013)

    Article  Google Scholar 

  48. R.D. Ene, V. Marinca, B. Marinca, Approximate analytical solutions of nonlinear vibrations of a thin elastic plate. Appl. Mech. Mater. 430, 40–44 (2013)

    Article  Google Scholar 

  49. V. Marinca, N. Herisanu, Optimal homotopy asymptotic method for solving Blasius equation. Appl. Math. Comput. 231, 134–139 (2014)

    Article  MathSciNet  Google Scholar 

  50. R. Nawaz, H. Ullah, S. Islam, M. Idress, Application of optimal homotopy asymptotic method in Burgers equations, J. Appl. Math. ID 387478 (2011)

    Google Scholar 

  51. H. Ullah, S. Islam, M. Idress, M. Arif, Solution of boundary layer problems with heat transfer by optimal homotopy asymptotic method, Abstract Appl. Anal. ID 324869 (2013)

    Google Scholar 

  52. R. Nawaz, S. Islam, I.A. Shah, H. Ullah, Optimal homotopy asymptotic method to nonlinear damped generalized regularized long-wave equation, Math. Probl. Eng. ID 503137 (2013)

    Google Scholar 

  53. M. Idrees, S. Haq, S. Islam, Application of the optimal homotopy asymptotic method to squeezing flow. Comput. Math. Appl. 59, 3858–3866 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  54. M. Idrees, S. Haq, S. Islam, Application of optimal homotopy asymptotic method to special sixth-order boundary value problems. J. World Appl. Sci. 9, 138–143 (2010)

    Google Scholar 

  55. A. Golbabai, M. Fardi, K. Sayevand, Application of optimal homotopy asymptotic method for solving strongly nonlinear oscillatory system. Math. Comput. Model. 58, 1837–1843 (2013)

    Article  MathSciNet  Google Scholar 

  56. M. Esmaeilpour, D.D. Ganji, Solution of the Jeffery-Hamel flow problem by optimal homotopy asymptotic method. Comput. Math. Appl. 59, 3405–3411 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  57. S. Iqbal, M. Idrees, A.M. Siddiqui, A.R. Ansari, Some solutions of the linear and nonlinear Klein-Gordon equations using optimal homotopy asymptotic method. Appl. Math. Comput. 216, 2898–2909 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  58. N. Ratib Anakira, A. K. Alomari, I. Hashim, Optimal homotopy asymptotic method for solving delay differential equations, Math. Probl. Eng. ID 498902 (2013)

    Google Scholar 

  59. A. Zeb, S. Iqbal, A.M. Siddiqui, T. Haroon, Application of the optimal homotopy asymptotic method to flow with heat transfer of a pseudoplastic fluid inside a circular pipe. J. Chin. Inst. Eng. 36(6), 797–805 (2013)

    Article  Google Scholar 

  60. M. Ghoreishi, A.I.B.M. Ismail, A.K. Alomari, Comparison between homotopy analysis method and optimal homotopy asymptotic method for nth-order integro-differential equation. Math. Meth. Appl. Sci. 34(15), 1833–1842 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marinca, V., Herisanu, N. (2015). Introduction. In: The Optimal Homotopy Asymptotic Method. Springer, Cham. https://doi.org/10.1007/978-3-319-15374-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15374-2_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15373-5

  • Online ISBN: 978-3-319-15374-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics