Skip to main content

Negative Modalities in the Light of Paraconsistency

  • Chapter
  • First Online:
The Road to Universal Logic

Part of the book series: Studies in Universal Logic ((SUL))

Abstract

Modality and non-classical negation have some interesting connections. One of the most famous connections is the relation between S4-modality and intuitionistic negation. In this chapter, we focus on the negative modalities in the perspective of paraconsistency. The basic idea here is to consider the negative modality defined as ‘not necessarily’ or equivalently ‘possibly not’ where ‘not’ is classical negation, and ‘necessarily’ and ‘possibly’ are modalities in modal logics. This chapter offers a solution to the problem of axiomatizing systems of modal logic such as D and S4 in terms of negative modalities. One of the upshots of this solution is that we may consider the semantics of paraconsistency with the help of various considerations known in the literature of modal logics related to D and S4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We only note that as Michael De is pointing out in [7, Chap. 2], a semantic approach rather than a syntactic approach seems to be promising in this context.

  2. 2.

    Strictly speaking, this will exclude the connexive negation (cf. [28]), but our purpose here is to clarify our usage of the word ‘negation’, not to claim something about negation in general. Thus we do not necessarily claim that connexive negation is not a negation.

  3. 3.

    For the purpose of emphasizing that negation in the language \({\mathcal{L}}_{\mathbf{CL}}\) is not necessarily intended to be classical negation whereas \({\mathcal{L}}_{\mathbf{ML}}\) is intended to be classical negation, we distinguished the negations by writing \({\sim}\) and \(\neg\), respectively.

  4. 4.

    These results are proved in [22].

  5. 5.

    This is also mentioned in [9, p. 69, Exercise 3.13].

  6. 6.

    Where ‘n’ is for ‘negative’.

References

  1. Başkent, C.: Some topological properties of paraconsistent models. Synthese 190, 4023–4040 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Batens, D.: On some remarkable relations between paraconsistent logics, modal logics, and ambiguity logics. In: Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M.L. (eds.) Paraconsistency: The Logical Way to the Inconsistent, Proceedings of the II World Congress on Paraconsistency, pp. 275–293. Marcel Dekker, New York (2002)

    Google Scholar 

  3. Béziau, J.Y.: S5 is a paraconsistent logic and so is first-order classical logic. Log. Investig. 9, 301–309 (2002)

    Google Scholar 

  4. Béziau, J.Y.: The Paraconsistent Logic Z – A possible solution to Jaśkowski’s problem. Log. Log. Philos. 15, 99–111 (2006)

    MATH  Google Scholar 

  5. da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame J. Form. Log. 15, 497–510 (1974)

    Article  MATH  Google Scholar 

  6. da Costa, N.C.A., Béziau, J.Y.: Carnot’s logic. Bull. Sect. Log. 22, 98–105 (1993)

    MATH  Google Scholar 

  7. De, M.: Negation in context. PhD thesis, University of St. Andrews, Scotland (2011)

    Google Scholar 

  8. Gordienko, A.B.: A paraconsistent extension of Sylvan’s logic. Algebra Log. 46(5), 289–296 (2007)

    Article  MathSciNet  Google Scholar 

  9. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, London, New York (1996)

    Book  MATH  Google Scholar 

  10. Jaśkowski, S.: A propositional calculus for inconsistent deductive systems. Log. Log. Philos. 7, 35–56 (1999)

    Article  MATH  Google Scholar 

  11. Jaśkowski, S.: On the discussive conjunction in the propositional calculus for inconsistent deductive systems. Log. Log. Philos. 7, 57–59 (1999)

    Article  MATH  Google Scholar 

  12. Jennings, R.: A note on the axiomatisation of Brouweresche modal logic. J. Philos. Log. 10, 341–343 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kamide, N., Wansing, H.: Proof theory of Nelson’s paraconsistent logic: A uniform perspective. Theor. Comput. Sci. 415, 1–38 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lenzen; W.: Necessary conditions for negation operators. In: Wansing, H. (ed.) Negation: A Notion in Focus, pp. 37–58. Walter de Gruyter, Berlin, New York (1996)

    Google Scholar 

  15. Lenzen, W.: Necessary conditions for negation operators (with particular applications to paraconsistent negation). In: Besnard, P., Hunter, A. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 2. Reasoning with Actual and Potential Contradictions, pp. 211–239. Kluwer, Dordrecht (1998)

    Google Scholar 

  16. Marcos, J.: Nearly every normal modal logics is paranormal. Log. Anal. 48, 279–300 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Mruczek-Nasieniewska, K., Nasieniewski, M.: Syntactical and semantical characterization of a class of paraconsistent logics. Bull. Sect. Log. 34(4), 118–125 (2005)

    MathSciNet  Google Scholar 

  18. Mruczek-Nasieniewska, K., Nasieniewski, M.: Paraconsitent logics obtained by J.Y. Beziau’s method by means of some non-normal modal logics. Bull. Sect. Log. 37(3/4), 185–196 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Mruczek-Nasieniewska, K., Nasieniewski, M.: Beziau’s logics obtained by means of quasi-regular logics. Bull. Sect. Log. 38(3/4), 189–204 (2009)

    MATH  MathSciNet  Google Scholar 

  20. Odintsov, S.: Constructive Negations and Paraconsistency. Springer, Dordrecht (2008)

    Book  MATH  Google Scholar 

  21. Omori, H., Waragai, T.: On Béziau’s logic Z. Log. Log. Philos. 17(4), 305–320 (2008)

    MATH  MathSciNet  Google Scholar 

  22. Omori, H., Waragai, T.: On extensions of a system of paraconsistent logic PCL1 (in Japanese). J. Jpn. Assoc. Philos. Sci. 39(2), 1–18 (2012)

    Google Scholar 

  23. Ono, H.: On some intuitionistic modal logics. Publ. RIMS, Kyoto Univ. 13, 687–722 (1977)

    Article  MATH  Google Scholar 

  24. Slater, B.H.: Paraconsistent logics? J. Philos. Log. 24(4), 451–454 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sylvan, R.: Variations on da Costa C systems and dual-intuitionistic logics I. Analyses of C\({}_{\omega}\) and CC\({}_{\omega}\). Stud. Log. 49(1), 47–65 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Urbas, I.: Paraconsistency and the C-systems of da Costa. Notre Dame J. Form. Log. 30, 583–597 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Urbas, I.: A Note on ‘Carnot’s Logic’. Bull. Sect. Log. 23, 118–125 (1994)

    MATH  MathSciNet  Google Scholar 

  28. Wansing, H.: Connexive logic. Stanford Encyclopedia of Philosophy (Fall 2014 Edition) (2014). http://plato.stanford.edu/entries/logic-connexive/

  29. Waragai, T., Omori, H.: Some new results on PCL1 and its related systems. Log. Log. Philos. 19(1–2), 129–158 (2010)

    MATH  MathSciNet  Google Scholar 

  30. Waragai, T. Shidori, T.: A system of paraconsistent logic that has the notion of ‘behaving classically’ in terms of the law of double negation and its relation to S5. In: Béziau, J.Y., Carnielli, W.A., Gabbay, D. (eds.) Handbook of Paraconsistency, pp. 177–187. College Publications, London (2007)

    Google Scholar 

Download references

Acknowledgment

Hitoshi Omori is a JSPS Postdoctoral Fellow for Research Abroad. An earlier version of the chapter was presented at a special session ‘Negation’ of UNILOG III in Lisbon. We would like to thank Michael De for his careful reading and suggestions to improve both content and English of the chapter. We would also like to thank Katsuhiko Sano and Makoto Kikuchi for their helpful discussions on the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Omori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Omori, H., Waragai, T. (2015). Negative Modalities in the Light of Paraconsistency. In: Koslow, A., Buchsbaum, A. (eds) The Road to Universal Logic. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-15368-1_23

Download citation

Publish with us

Policies and ethics