Skip to main content
  • 1050 Accesses

Abstract

Bariatric surgery was originally designed to induce weight-reduction in morbidly obese patients. Benefits of bariatric surgery, however, extend well beyond weight loss and include dramatic improvement of type 2 diabetes, hypertension, dyslipidaemia and reduction of overall mortality. Studies in rodents and humans have shown that the anti-diabetes effects of certain bariatric procedures are not just secondary to weight loss and result from a variety of neuroendocrine and metabolic mechanisms, which are direct consequence of changes in gastrointestinal (GI) anatomy [1]. This knowledge provides a rationale for the use of gastrointestinal surgery as both, a treatment of type 2 diabetes and a tool to elucidate the elusive pathophysiology of this disease [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubino F, Marescaux J. The effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239(1):1–11.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg. 2002;236(5):554–9.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150(6):2518–25.

    Article  CAS  PubMed  Google Scholar 

  4. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, Bekker JH, Ghatei MA, Bloom SR, Walters JR, Welbourn R, le Roux CW. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153:3613–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Liou AP, Paziuk M, Luevano Jr JM, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.

    PubMed Central  PubMed  Google Scholar 

  6. Breen DM, Rasmussen BA, Kokorovic A, Wang R, Cheung GW, Lam TK. Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18:950–5.

    Article  CAS  PubMed  Google Scholar 

  7. Saeidi N, Meoli L, Nestoridi E, Gupta NK, Kvas S, Kucharczyk J, Bonab AA, Fischman AJ, Yarmush ML, Stylopoulos N. Reprogramming of intestinal glucose metabolism and glycemic control in rats after gastric bypass. Science. 2013;341(6144):406–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Troy S, Soty M, Ribeiro L, Laval L, Migrenne S, Fioramonti X, Pillot B, Fauveau V, Aubert R, Viollet B, Foretz M, Leclerc J, Duchampt A, Zitoun C, Thorens B, Magnan C, Mithieux G, Andreelli F. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 2008;8:201–11.

    Article  CAS  PubMed  Google Scholar 

  9. Jiao J, Bae EJ, Bandyopadhyay G, Oliver J, Marathe C, Chen M, Hsu JY, Chen Y, Tian H, Olefsky JM, Saberi M. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in Zucker fa/fa rats. Diabetes. 2013;62(4):1074–83. doi:10.2337/db12-068.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dixon JB, O’Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, Proietto J, Bailey M, Anderson M. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299:316–23.

    CAS  PubMed  Google Scholar 

  11. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, Nanni G, Pomp A, Castagneto M, Ghirlanda G, Rubino F. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577–85.

    Article  CAS  PubMed  Google Scholar 

  12. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, Thomas S, Abood B, Nissen SE, Bhatt DL. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ikramuddin S, Korner J, Lee WJ, Connett JE, Inabnet WB, Billington CJ, Thomas AJ, Leslie DB, Chong K, Jeffery RW, Ahmed L, Vella A, Chuang LM, Bessler M, Sarr MG, Swain JM, Laqua P, Jensen MD, Bantle JP. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA. 2013;309(21):2240–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Dixon JB, Zimmet P, Alberti KG, Rubino F, on behalf of the International Diabetes Federation Taskforce on Epidemiology and Prevention. Bariatric surgery: an IDF statement for obese Type 2 diabetes. Diabet Med. 2011;28(6):628–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rubino F, Shukla A, Pomp A, Moreira M, Ahn SM, Dakin G. Bariatric, metabolic and diabetes surgery: what’s in a name? Ann Surg. 2014;259:117–22.

    Article  PubMed  Google Scholar 

  16. Leyton O. Diabetes and operation. A note on the effect of gastro-jejunostomy upon a case of mild diabetes mellitus with a low renal threshold. Lancet. 1925;206(5336):1162–3.

    Article  Google Scholar 

  17. Friedman MN, Sancetta AJ, Magovern GJ. The amelioration of diabetes mellitus following subtotal gastrectomy. Surg Gynecol Obstet. 1955;100(2):201–4.

    CAS  PubMed  Google Scholar 

  18. Angervall L, Dotevall G, Tillander H. Amelioration of diabetes mellitus following gastric resection. Acta Med Scand. 1961;169:743–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad U, Danowski TS, Nolan S, Stephan T, Sunder JH, Bahl VK. Remissions of diabetes mellitus after weight reduction by jejunoileal bypass. Diabetes Care. 1978;1(3):158–65.

    Article  CAS  PubMed  Google Scholar 

  20. Printen KJ, Blommers TJ, Scott D. The morbidly obese diabetic and gastric bypass. Am Surg. 1979;45(8):491–4.

    CAS  PubMed  Google Scholar 

  21. Ackerman NB. Observations on the improvements in carbohydrate metabolism in diabetic and other morbidly obese patients after jejunoileal bypass. Surg Gynecol Obstet. 1981;152(5):581–6.

    CAS  PubMed  Google Scholar 

  22. Pories WJ, Caro JF, Flickinger EG, Meelheim HD, Swanson MS. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville Gastric Bypass. Ann Surg. 1987;206(3):316–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, Barakat HA, de Ramon RA, Israel G, Dolezal JM. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222:339–50; discussion 350–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Scopinaro N, Adami GF, Marinari GM, Gianetta E, Traverso E, Friedman D, Camerini G, Baschieri G, Simonelli A. Biliopancreatic diversion. World J Surg. 1998;22(9):936–46.

    Article  CAS  PubMed  Google Scholar 

  25. Cohen RV, Schiavon CA, Pinheiro JS, Correa JL, Rubino F. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22-34 kg/m2. Surg Obes Relat Dis. 2007;3:195–7.

    Article  PubMed  Google Scholar 

  26. Cohen RV, Pinheiro JC, Schiavon CA, Salles JE, Wajchenberg BL, Cummings DE. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35:1420–8.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Rubino R, Kaplan LM, Schauer PR, Cummings DE. The Diabetes Surgery Summit Consensus Conference: recommendations for the evaluation and use of gastrointestinal surgery to treat type 2 diabetes mellitus. Ann Surg. 2010;251:399–405.

    Article  PubMed  Google Scholar 

  28. Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, Kovack B, Bawa B, Koshy N, Lee H, Yapp K, Olivan B. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:2479–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Strader AD, Vahl TP, Jandacek RJ, Woods SC, D’Alessio DA, Seeley RJ. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab. 2005;288:E447–53.

    Article  CAS  PubMed  Google Scholar 

  30. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, Castagneto M, Marescaux J. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Halperin F, Ding SA, Simonson DC, Panosian J, Goebel-Fabbri A, Wewalka M, Hamdy O, Abrahamson M, Clancy K, Foster K, Lautz D, Vernon A, Goldfine AB. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149(7):716–26. doi:10.1001/jamasurg.2014.514.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Courcoulas AP, Goodpaster BH, Eagleton JK, Belle SH, Kalarchian MA, Lang W, Toledo FG, Jakicic JM. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 2014;149(7):707–15. doi:10.1001/jamasurg.2014.467.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wentworth JM, Playfair J, Laurie C, Ritchie ME, Brown WA, Burton P, Shaw JE, O’Brien PE. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(7):545–52.

    Article  PubMed  Google Scholar 

  34. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, Aminian A, Pothier CE, Kim ES, Nissen SE, Kashyap SR, STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes–3-year outcomes. N Engl J Med. 2014;370(21):2002–13.

    Article  PubMed  Google Scholar 

  35. Sjöström L, Narbro K, Sjöström CD, et al.; Swedish Obese Subjects Study. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.

    Google Scholar 

  36. Sjostrom L, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65.

    Article  PubMed  Google Scholar 

  37. Adams TD, Davidson LE, Litwin SE, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308(11):1122–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. American Diabetes Association. Standards of medical care in diabetes--2009. Diabetes Care. 2009;32 Suppl 1:S13–61.

    Article  PubMed Central  Google Scholar 

  39. Bojsen-Møller KN, Dirksen C, Jørgensen NB, Jacobsen SH, Serup AK, Albers PH, Hansen DL, Worm D, Naver L, Kristiansen VB, Wojtaszewski JF, Kiens B, Holst JJ, Richter EA, Madsbad S. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass. Diabetes. 2014;63:1725–37.

    Article  PubMed  Google Scholar 

  40. Salinari S, Bertuzzi A, Guidone C, Previti E, Rubino F, Mingrone G. Insulin sensitivity and secretion changes after gastric bypass in normotolerant and diabetic obese subjects. Ann Surg. 2013;257(3):462–8.

    Article  PubMed  Google Scholar 

  41. Dirksen C, Bojsen-Møller KN, Jørgensen NB, Jacobsen SH, Kristiansen VB, Naver LS, Hansen DL, Worm D, Holst JJ, Madsbad S. Exaggerated release and preserved insulinotropic action of glucagon-like peptide-1 underlie insulin hypersecretion in glucose-tolerant individuals after Roux-en-Y gastric bypass. Diabetologia. 2013;56(12):2679–87.

    Article  CAS  PubMed  Google Scholar 

  42. Kashyap SR, Bhatt DL, Wolski K, Watanabe RM, Abdul-Ghani M, Abood B, Pothier CE, Brethauer S, Nissen S, Gupta M, Kirwan JP, Schauer PR. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36(8):2175–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Rubino F, Amiel SA. Is the gut the “sweet spot” for the treatment of diabetes? Diabetes. 2014;63(7):2225–8. doi:10.2337/db14-0402.

    Article  PubMed  Google Scholar 

  44. Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med. 2005;353(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  45. Li Z, Zhang HY, Lv LX, Li DF, Dai JX, Sha O, Li WQ, Bai Y, Yuan L. Roux-en-Y gastric bypass promotes expression of PDX-1 and regeneration of beta-cells in Goto-Kakizaki rats. World J Gastroenterol. 2010;16(18):2244–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Speck M, Cho YM, Asadi A, Rubino F, Kieffer TJ. Duodenal-jejunal bypass protects GK rats from {beta}-cell loss and aggravation of hyperglycemia and increases enteroendocrine cells coexpressing GIP and GLP-1. Am J Physiol Endocrinol Metab. 2011;300(5):E923–32.

    Article  CAS  PubMed  Google Scholar 

  47. Lindqvist A, Spégel P, Ekelund M, Vaz EG, Pierzynowski S, Gomez M, Mulder H, Hedenbro J, Groop L, Wierup N. Gastric bypass improves ss-cell function and increases β-cell mass in a porcine model. Diabetes. 2014;63:1665–71.

    Article  CAS  PubMed  Google Scholar 

  48. Olszewski PK, Li D, Grace MK, Billington CJ, Kotz CM, Levine AS. Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides. 2003;24(4):597–602. Epub 2003/07/16.

    Article  CAS  PubMed  Google Scholar 

  49. Langer FB, Reza Hoda MA, Bohdjalian A, Felberbauer FX, Zacherl J, Wenzl E, et al. Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. Obes Surg. 2005;15(7):1024–9. Epub 2005/08/18.

    Article  CAS  PubMed  Google Scholar 

  50. DePaula AL, Macedo AL, Schraibman V, Mota BR, Vencio S. Hormonal evaluation following laparoscopic treatment of type 2 diabetes mellitus patients with BMI 20-34. Surg Endosc. 2009;23(8):1724–32. Epub 2008/10/03.

    Article  PubMed  Google Scholar 

  51. Ramon JM, Salvans S, Crous X, Puig S, Goday A, Benaiges D, et al. Effect of Roux-en-Y gastric bypass vs sleeve gastrectomy on glucose and gut hormones: a prospective randomised trial. J Gastrointest Surg Off J Soc Surg Aliment Tract. 2012;16(6):1116–22. Epub 2012/03/10.

    Article  Google Scholar 

  52. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. 2012;22(5):740–8. Epub 2012/02/23.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Schindler K, Prager G, Ballaban T, Kretschmer S, Riener R, Buranyi B, et al. Impact of laparoscopic adjustable gastric banding on plasma ghrelin, eating behaviour and body weight. Eur J Clin Invest. 2004;34(8):549–54. Epub 2004/08/13.

    Article  CAS  PubMed  Google Scholar 

  54. Uzzan B, Catheline JM, Lagorce C, Airinei G, Bon C, Cohen R, et al. Expression of ghrelin in fundus is increased after gastric banding in morbidly obese patients. Obes Surg. 2007;17(9):1159–64. Epub 2007/12/13.

    Article  PubMed  Google Scholar 

  55. Nijhuis J, van Dielen FM, Buurman WA, Greve JW. Ghrelin, leptin and insulin levels after restrictive surgery: a 2-year follow-up study. Obes Surg. 2004;14(6):783–7. Epub 2004/08/21.

    Article  PubMed  Google Scholar 

  56. Stoeckli R, Chanda R, Langer I, Keller U. Changes of body weight and plasma ghrelin levels after gastric banding and gastric bypass. Obes Res. 2004;12(2):346–50. Epub 2004/02/26.

    Article  CAS  PubMed  Google Scholar 

  57. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418(6898):650–4. Epub 2002/08/09.

    Article  CAS  PubMed  Google Scholar 

  58. Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93(2):210–5. Epub 2006/01/05.

    Article  CAS  PubMed  Google Scholar 

  59. Bose M, Machineni S, Olivan B, Teixeira J, McGinty JJ, Bawa B, et al. Superior appetite hormone profile after equivalent weight loss by gastric bypass compared to gastric banding. Obesity (Silver Spring). 2010;18(6):1085–91. Epub 2010/01/09.

    Article  CAS  Google Scholar 

  60. Ochner CN, Gibson C, Shanik M, Goel V, Geliebter A. Changes in neurohormonal gut peptides following bariatric surgery. Int J Obes (2005). 2011;35(2):153–66. Epub 2010/07/14.

    Article  CAS  Google Scholar 

  61. Tang-Christensen M, Vrang N, Larsen PJ. Glucagon-like peptide containing pathways in the regulation of feeding behaviour. Int J Obes Relat Metabol Disord J Int Assoc Study Obes. 2001;25 Suppl 5:S42–7. Epub 2002/02/13.

    Article  CAS  Google Scholar 

  62. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243(1):108–14. Epub 2005/12/24.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Morinigo R, Moize V, Musri M, Lacy AM, Navarro S, Marin JL, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91(5):1735–40. Epub 2006/02/16.

    Article  CAS  PubMed  Google Scholar 

  64. Shak JR, Roper J, Perez-Perez GI, Tseng CH, Francois F, Gamagaris Z, et al. The effect of laparoscopic gastric banding surgery on plasma levels of appetite-control, insulinotropic, and digestive hormones. Obes Surg. 2008;18(9):1089–96. Epub 2008/04/15.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Cummings DE, Overduin J, Foster-Schubert KE, Carlson MJ. Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis Off J Am Soc Bariatric Surg. 2007;3(2):109–15. Epub 2007/03/28.

    Article  Google Scholar 

  66. Patel RT, Shukla AP, Ahn SM, Moreira M, Rubino F. Surgical control of obesity and diabetes: the role of intestinal vs. gastric mechanisms in the regulation of body weight and glucose homeostasis. Obesity (Silver Spring). 2014;22(1):159–69. Epub 2013/03/21.

    Article  CAS  Google Scholar 

  67. Mokadem M, Zechner JF, Margolskee RF, Drucker DJ, Aguirre V. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Mol Metabol. 2014;3(2):191–201. Epub 2014/03/19.

    Article  CAS  Google Scholar 

  68. Jimenez A, Casamitjana R, Viaplana-Masclans J, Lacy A, Vidal J. GLP-1 action and glucose tolerance in subjects with remission of type 2 diabetes after gastric bypass surgery. Diabetes Care. 2013;36(7):2062–9. Epub 2013/01/30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rasmussen BA, Breen DM, Duca FA, Cote CD, Zadeh-Tahmasebi M, Filippi BM, et al. Jejunal leptin-PI3K signaling lowers glucose production. Cell Metab. 2014;19(1):155–61. Epub 2013/12/24.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006;103(4):1006–11. Epub 2006/01/18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. Epub 2006/01/10.

    Article  CAS  PubMed  Google Scholar 

  72. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8. Epub 2014/03/29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Sweeney TE, Morton JM. The human gut microbiome: a review of the effect of obesity and surgically induced weight loss. JAMA Surg. 2013;148(6):563–9. Epub 2013/04/11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Lee WJ, Chong K, Ser KH, et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch Surg. 2011;146(2):143–8.

    Article  PubMed  Google Scholar 

  75. Salinari S, Debard C, Bertuzzi A, Durand C, Zimmet P, Vidal H, et al. Jejunal proteins secreted by db/db mice or insulin-resistant humans impair the insulin signaling and determine insulin resistance. PLoS One. 2013;8(2):e56258. Epub 2013/02/26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  CAS  PubMed  Google Scholar 

  77. Sjöström L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden Å, Bouchard C, Carlsson B, Karason K, Lönroth H, Näslund I, Sjöström E, Taube M, Wedel H, Svensson PA, Sjöholm K, Carlsson LM. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304. doi:10.1001/jama.2014.5988.

    Article  PubMed  Google Scholar 

  78. Gill RS, Birch DW, Shi X, Sharma AM, Karmali S. Sleeve gastrectomy and type 2 diabetes mellitus: a systematic review. Surg Obes Relat Dis. 2010;6(6):707–13.

    Article  PubMed  Google Scholar 

  79. Brethauer SA, Aminian A, Romero-Talamás H, Batayyah E, Mackey J, Kennedy L, Kashyap SR, Kirwan JP, Rogula T, Kroh M, Chand B, Schauer PR. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258(4):628–36. doi:10.1097/SLA.0b013e3182a5034b; discussion 636–7.

    PubMed Central  PubMed  Google Scholar 

  80. DePaula AL, Macedo AL, Prudente AS, et al. Laparoscopic sleeve gastrectomy with ileal interposition (“neuroendocrine brake”)—pilot study of a new operation. Surg Obes Relat Dis. 2006;2:464–6.

    Article  Google Scholar 

  81. Scopinaro N, Adami GF, Papadia FS, et al. Effects of Biliopancreatic Diversion on Type 2 Diabetes in Patients With BMI 25 to 35. Ann Surg. 2011;253(4):699–703.

    Article  PubMed  Google Scholar 

  82. Lee WJ, Wang W, Lee YC. Effect of laparoscopic mini-gastric bypass for type 2 diabetes mellitus: comparison of BMI > 35 and <35 kg/m2. J Gastrointest Surg. 2008;12:945–52.

    Article  PubMed  Google Scholar 

  83. Demaria EJ, Winegar DA, Pate VW, Hutcher NE, Ponce J, Pories WJ. Early postoperative outcomes of metabolic surgery to treat diabetes from sites participating in the ASMBS bariatric surgery center of excellence program as reported in the Bariatric Outcomes Longitudinal Database. Ann Surg. 2010;252(3):559–66; discussion 566–7.

    PubMed  Google Scholar 

  84. Cohen RV, Pinheiro JC, Schiavon CA, Salles JE, Wajchenberg BL, Cummings DE. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35(7):1420–8. doi:10.2337/dc11-2289.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Lakdawala MA, Bhasker A, Mulchandani D, Goel S, Jain S. Comparison between the results of laparoscopic sleeve gastrectomy and laparoscopic Roux-en-Y gastric bypass in the Indian population: a retrospective 1 year study. Obes Surg. 2010;20(1):1–6.

    Article  PubMed  Google Scholar 

  86. Schauer PR, Burguera B, Ikramuddin S, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–84.

    PubMed Central  PubMed  Google Scholar 

  87. Lee WJ, Ser KH, Chong K, Lee YC, Chen SC, Tsou JJ, Chen JC, Chen CM. Laparoscopic sleeve gastrectomy for diabetes treatment in nonmorbidly obese patients: efficacy and change of insulin secretion. Surgery. 2010;147(5):664–9.

    Article  PubMed  Google Scholar 

  88. Sjostrom L, Gummesson A, Sjostrom CD, et al. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 2009;10:653–62.

    Article  PubMed  Google Scholar 

  89. Ashrafian H, Ahmed K, Rowland SP, et al. Metabolic surgery and cancer: protective effects of bariatric procedures. Cancer. 2011;117(9):1788–99.

    Article  PubMed  Google Scholar 

  90. Sjöström L, Lindroos AK, Peltonen M, et al.; Swedish Obese Subjects Study Scientific Group. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 351(26):2683–93.

    Google Scholar 

  91. Buchwald H, Varco RL. Metabolic surgery. New York: Grunne and Stratton; 1978.

    Google Scholar 

  92. Rubino F, Cummings DE. Surgery: The coming of age of metabolic surgery. Nature Rev Endo. 2012;8: 702–4. doi:10.1038/nrendo.2012.207.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Rubino MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubino, F. (2015). Diabetes Surgery. In: Lucchese, M., Scopinaro, N. (eds) Minimally Invasive Bariatric and Metabolic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-15356-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15356-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15355-1

  • Online ISBN: 978-3-319-15356-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics