Advertisement

Pharmacogenetics of Neurodegenerative Disorders

  • Ramón CacabelosEmail author
  • Clara Torrellas
  • Pablo Cacabelos
  • María J. Villanueva
  • Sergio Piñeiro
  • Cristina Solveira
Chapter
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 9)

Abstract

Neurodegenerative disorders (NDDs) (Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, Huntington’s disease) represent a major problem of health in developed countries, with an important repercussion in disability and health economics. NDDs pose several challenges to our society and the scientific community: they represent an epidemiological problem and a socio-economic, psychological and family burden; most of them have an obscure/complex pathogenesis; their diagnosis is not easy and lacks specific biomarkers; and their treatment is difficult and inefficient. Most NDDs share some common features: they are polygenic disorders in which genetic, epigenetic and environmental factors are involved; some of them follow a general rule in genomics related to disease onset, clinical course and prognosis; multifactorial dysfunctions in several metabolomic networks lead to functional damage to specific brain circuits; accumulation of toxic proteins (i.e. conformational changes) in the nervous tissue is involved in many cases of NDDs; all of them are costly for society, deteriorating the quality of life of sufferers and increasing disability; and although NDDs do not have a curative treatment, in practice available therapeutics is susceptible to pharmacogenomic intervention.

The genes involved in the pharmacogenomics of drugs to treat NDDs fall into five categories: (i) genes associated with disease pathogenesis (pathogenic genes); (ii) genes associated with the mechanism of action of drugs (mechanistic genes); (iii) genes associated with drug metabolism; (iv) genes associated with drug transporters; and (v) pleiotropic genes involved in multifaceted cascades and metabolic reactions. Pharmacogenomics accounts for 30–90 % variability in pharmacokinetics and pharmacodynamics. Only 20–30 % of the Caucasian population processes normally approximately 60 % of the current drugs which are metabolised via cytochromes CYP2D6, CYP2C9 and CYP2C19. Clinical pharmacogenomics may contribute to personalising pharmacological treatment, predicting patient/drug-dose selection, minimising drug interactions, increasing drug efficacy, and reducing unnecessary costs.

Keywords

Neurodegenerative disorders Alzheimer’s disease Parkinson’s disease Pharmacogenomics CYP2D6 CYP2C9 CYP2C19 CYP3A4/5 APOE Transporters 

References

  1. 1.
    Boudreau RL, Spengler RM, Davidson BL (2011) Rational design of therapeutic siRNAs: minimizing off-targeting potential to improve the safety of RNAi therapy for Huntington’s disease. Mol Ther 19(12):2169–2177PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Coutinho P, Ruano L, Loureiro JL et al (2013) Hereditary ataxia and spastic paraplegia in portugal: a population-based prevalence study. JAMA Neurol 70(6):746–755PubMedCrossRefGoogle Scholar
  3. 3.
    International Statistical Classification of Diseases and Related Health Problems (ICD-10) [homepage on the Internet]. Geneva, Switzerland: World Health Organization, 1948 [19 July 2013]. http://apps.who.int/classifications/icd10/browse/2010/en
  4. 4.
    Liberski PP, Budka H (2004). Gerstmann-Sträussler-Scheinker disease. I. Human diseases. Folia Neuropathol 42(Suppl B):120–140PubMedGoogle Scholar
  5. 5.
    Medscape [homepage on the Internet]. New York, USA: WebMD, 1984. http://reference.medscape.com/. Accessed 19 July 2013
  6. 6.
    National Institute of Neurological Disorders and Stroke (NINDS) [homepage on the Internet]. Bethesda, Maryland, USA: National Institutes of Health (NIH), 1950. http://www.ninds.nih.gov/. Accessed 19 July 2013
  7. 7.
    Orphanet (version 4.10.2) [homepage on the Internet]. Paris, France: Orphanet. http://www.orpha.net/consor/cgi-bin/index.php [updated 18 July 2013; Accessed 19 July 2013]
  8. 8.
    Prince M, Bryce R, Albanese E et al (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9(1):63–75.e2PubMedCrossRefGoogle Scholar
  9. 9.
    Ying SY, Lin SL (2009) Intron-mediated RNA interference and microRNA biogenesis. Methods Mol Biol 487:387–413PubMedGoogle Scholar
  10. 10.
    Su YN, Hung CC, Lin SY et al (2011) Carrier screening for spinal muscular atrophy (SMA) in 107,611 pregnant women during the period 2005–2009: a prospective population-based cohort study. PLoS ONE 6(2):e17067PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Cacabelos R (2012) Pharmacogenomics of central nervous system (CNS) drugs. Drug Dev Res 73(8):461–476.CrossRefGoogle Scholar
  12. 12.
    Cacabelos R (2009) The path to personalized medicine in mental disorders. In: Ritsner MS (ed) The handbook of neuropsychiatric biomarkers, endophenotypes and genes, vol 4. Springer, Netherlands, pp 3–63CrossRefGoogle Scholar
  13. 13.
    Cacabelos R (2009) Pharmacogenomics and therapeutic strategies for dementia. Expert Rev Mol Diag 9(6):567–611CrossRefGoogle Scholar
  14. 14.
    Cacabelos R, Fernández-Novoa L, Martínez-Bouza R, McKay A, Carril JC, Lombardi V, Corzo L, Carrera I, Tellado I, Nebril L, Alcaraz M, Rodríguez S, Casas A, Couceiro V, Alvarez A (2010) Future trends in the pharmacogenomics of brain disorders and dementia: influence of APOE and CYP2D6 variants. Pharmaceuticals 3(10):3040–3100.PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cacabelos R, Martínez R, Fernández-Novoa L, Carril JC, Lombardi V, Carrera I, Corzo L, Tellado I, Leszek J, McKay A, Takeda M (2012). Genomics of dementia: APOE- and CYP2D6-related pharmacogenetics. Int J Alzheimer Dis 2012:518901. doi:10.1155/2012/518901Google Scholar
  16. 16.
    Cacabelos R, Martínez-Bouza R, Carril JC, Fernández-Novoa L, Lombardi V, Carrera I, Corzo L, McKay A (2012) Genomics and pharmacogenomics of brain disorders. Cur Pharm Biotech 13(5):674–725CrossRefGoogle Scholar
  17. 17.
    Cacabelos R (ed) (2012) World guide for drug use and pharmacogenomics. EuroEspes Publishing, CorunnaGoogle Scholar
  18. 18.
    Cacabelos R (2012) The metabolomics paradigm of pharmacogenomics in complex disorders. Metabolomics 2:e119. doi:10.4172/2153-0769.1000e119Google Scholar
  19. 19.
    Cacabelos R, Cacabelos P, Aliev G (2013) Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. Open J Psychiatry 3:46–139.Google Scholar
  20. 20.
    Cacabelos R, Fernández-Novoa L, Lombardi V, Kubota Y, Takeda M (2005) Molecular genetics of Alzheimer’s disease and aging. Meth Find Exper Clin Pharmacol 27(Suppl A):1–573Google Scholar
  21. 21.
    Cacabelos R (2007) Pharmacogenetic basis for therapeutic optimization in Alzheimer’s disease. Mol Diag Ther 11(6):385–405CrossRefGoogle Scholar
  22. 22.
    Cacabelos R (2007) Molecular pathology and pharmacogenomics in Alzheimer’s disease: polygenic-related effects of multifactorial treatments on cognition, anxiety, and depression. Meth Find Exper Clin Pharmacol 29(Suppl B):1–91Google Scholar
  23. 23.
    Cacabelos R (2008) Pharmacogenomics and therapeutic prospects in dementia. Eur Arch Psychiatry Clin Neurosci 258(Suppl 1):28–47PubMedCrossRefGoogle Scholar
  24. 24.
    Cacabelos R (2008) Pharmacogenomics in Alzheimer’s disease. Meth Mol Biol 448:213–357CrossRefGoogle Scholar
  25. 25.
    Zhou SF, Di YM, Chan E, Du YM, Chow VD, Xue CC, Lai X, Wang JC, Li CG, Tian M, Duan W (2008) Clinical pharmacogenetics and potential application in personalized medicine. Curr Drug Metab 9(8):738–784PubMedCrossRefGoogle Scholar
  26. 26.
    Malhotra AK, Lencz T, Correll CU, Kane JM (2007) Genomics and the future of pharmacotherapy in psychiatry. Int Rev Psychiatry 19(5):523–530PubMedCrossRefGoogle Scholar
  27. 27.
    Vedeler CA, Myhr KM, Nyland H (2001) Fc receptors for immunoglobulin G–a role in the pathogenesis of Guillain-Barré syndrome and multiple sclerosis. J Neuroimmunol 118(2):187–193PubMedCrossRefGoogle Scholar
  28. 28.
    DrugBank [homepage on the internet]. Alberta, Canada; University of Alberta.http://www.drugbank.ca/ Accessed 19 July 2013
  29. 29.
    EMEA [homepage on the internet]. London, UK: European Medicines Agency; 1995. http://www.ema.europa.eu/ema/ Accessed 19 July 2013
  30. 30.
    FDA [homepage on the internet]. Silver Spring, MD: U.S. Food and Drug Administration; 1906. http://www.fda.gov/. Accessed 19 July 2013
  31. 31.
    GeneReviews [homepage on the internet]. Seattle: University of Washington; 1993. http://www.ncbi.nlm.nih.gov/books/NBK1116/. Accessed 19 June 2013
  32. 32.
    Sanderink GJ, Bournique B, Stevens J, Petry M, Martinet M (1997) Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro. J Pharmacol Exp Ther 282(3):1465–1472PubMedGoogle Scholar
  33. 33.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedCrossRefGoogle Scholar
  34. 34.
    Morrow CS, Peklak-Scott C, Bishwokarma B, Kute TE, Smitherman PK, Townsend AJ (2006) Multidrug resistance protein 1 (MRP1, ABCC1) mediates resistance to mitoxantrone via glutathione-dependent drug efflux. Mol Pharmacol 69(4):1499–1505PubMedCrossRefGoogle Scholar
  35. 35.
    Armstrong MJ, Miyasaki JM, American Academy of Neurology (2012) Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: Report of the guideline development subcommittee of the American Academy of Neurology. Neurology 79(6):597–603.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ries V, Selzer R, Eichhorn T, Oertel WH, Eggert K, German Tolcapone Study Group (2010) Replacing a dopamine agonist by the COMT-inhibitor tolcapone as an adjunct to L-dopa in the treatment of Parkinson’s disease: a randomized, multicenter, open-label, parallel-group study. Clin Neuropharmacol 33(3):142–150PubMedCrossRefGoogle Scholar
  37. 37.
    The Anatomical, Therapeutic, Chemical (ATC) classification system with Defined Daily Doses (DDDs) [homepage on the internet]. Geneva, Switzerland: World Health Organization 1948. http://www.whocc.no/atc_ddd_index. Accessed 19 July 2013
  38. 38.
    Messina S, Patti F (2013) The pharmacokinetics of glatiramer acetate for multiple sclerosis treatment. Expert Opin Drug Metab Toxicol 9(10):1349–1359Google Scholar
  39. 39.
    Scannevin RH, Chollate S, Jung MY et al (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341(1):274–284PubMedCrossRefGoogle Scholar
  40. 40.
    Loewe R, Holnthoner W, Gröger M, Pillinger M, Gruber F, Mechtcheriakova D, Hofer E, Wolff K, Petzelbauer P (2002) Dimethylfumarate inhibits TNF-induced nuclear entry of NF-kappa B/p65 in human endothelial cells. J Immunol 168(9):4781–4787PubMedCrossRefGoogle Scholar
  41. 41.
    Seidel P, Goulet S, Hostettler K, Tamm M, Roth M (2010) DMF inhibits PDGF-BB induced airway smooth muscle cell proliferation through induction of hemeoxygenase-1. Respir Res 11:145PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Szczuciński A, Losy J (2011) CCL5, CXCL10 and CXCL11 chemokines in patients with active and stable relapsing-remitting multiple sclerosis. Neuroimmunomodulation 18(1):67–72PubMedCrossRefGoogle Scholar
  43. 43.
    Valero T, Steele S, Neumüller K, Bracher A, Niederleithner H, Pehamberger H, Petzelbauer P, Loewe R (2010) Combination of dacarbazine and dimethylfumarate efficiently reduces melanoma lymph node metastasis. J Invest Dermatol 130(4):1087–1094PubMedCrossRefGoogle Scholar
  44. 44.
    Sinko G, Kovarik Z, Reiner E, Simeon-Rudolf V, Stojan J (2011) Mechanism of stereoselective interaction between butyrylcholinesterase and ethopropazine enantiomers. Biochimie 93(10):1797–1807PubMedCrossRefGoogle Scholar
  45. 45.
    Takuwa N, Du W, Kaneko E, Okamoto Y, Yoshioka K, Takuwa Y (2011) Tumor-suppressive sphingosine-1-phosphate receptor-2 counteracting tumor-promoting sphingosine-1-phosphate receptor-1 and sphingosine kinase 1—Jekyll Hidden behind Hyde. Am J Cancer Res 1(4):460–481PubMedCentralPubMedGoogle Scholar
  46. 46.
    Baker GB, Sowa B, Todd KG (2007) Amine oxidases and their inhibitors: what can they tell us about neuroprotection and the development of drugs for neuropsychiatric disorders? J Psychiatry Neurosci 32(5):313–315PubMedCentralPubMedGoogle Scholar
  47. 47.
    Caminero A, Comabella M, Montalban X (2011) Role of tumour necrosis factor (TNF)-α and TNFRSF1A R92Q mutation in the pathogenesis of TNF receptor-associated periodic syndrome and multiple sclerosis. Clin Exp Immunol 166(3):338–345PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Somnay Y, Chen H, Kunnimalaiyaan M (2013). Synergistic effect of pasireotide and teriflunomide in carcinoids in vitro. Neuroendocrinology 97(2):183–192PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Kis E, Nagy T, Jani M et al (2009) Leflunomide and its metabolite A771726 are high affinity substrates of BCRP: implications for drug resistance. Ann Rheum Dis 68(7):1201–1207PubMedCrossRefGoogle Scholar
  50. 50.
    Latchoumycandane C, Seah QM, Tan RC, Sattabongkot J, Beerheide W, Boelsterli UA (2006) Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes. Toxicol Appl Pharmacol 217(1):125–133PubMedCrossRefGoogle Scholar
  51. 51.
    McCombe PA, Henderson RD (2010) Effects of gender in amyotrophic lateral sclerosis. Gend Med 7(6):557–570PubMedCrossRefGoogle Scholar
  52. 52.
    Márki-Zay J, Tauberné Jakab K, Szerémy P, Krajcsi P (2013) MDR-ABC transporters: biomarkers in rheumatoid arthritis. Clin Exp Rheumatol 31(5):779–787Google Scholar
  53. 53.
    Palmer AM (2010) Teriflunomide, an inhibitor of dihydroorotate dehydrogenase for the potential oral treatment of multiple sclerosis. Curr Opin Investig Drugs 11(11):1313–1323PubMedGoogle Scholar
  54. 54.
    Wiese MD, Rowland A, Polasek TM, Sorich MJ, O’Doherty C (2013) Pharmacokinetic evaluation of teriflunomide for the treatment of multiple sclerosis. Expert Opin Drug Metab Toxicol 9(8):1025–1035PubMedCrossRefGoogle Scholar
  55. 55.
    Zeyda M, Poglitsch M, Geyeregger R, Smolen JS, Zlabinger GJ, Hörl WH, Waldhäusl W, Stulnig TM, Säemann MD (2005) Disruption of the interaction of T cells with antigen-presenting cells by the active leflunomide metabolite teriflunomide: involvement of impaired integrin activation and immunologic synapse formation. Arthritis Rheum 52(9):2730–2739PubMedCrossRefGoogle Scholar
  56. 56.
    Goris A, Pauwels I, Dubois B (2012) Progress in multiple sclerosis genetics. Curr Genomics 13(8):646–663PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Ingelman-Sundberg M, Sim SC, Gomez A, Rodríguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: Pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116(3):496–526PubMedCrossRefGoogle Scholar
  58. 58.
    Cacabelos R, Martínez-Bouza R (2011) Genomics and pharmacogenomics of schizophrenia. CNS Neurosci Ther 17(5):541–565Google Scholar
  59. 59.
    Isaza CA, Henao J, López AM, Cacabelos R (2000) Isolation, sequence and genotyping of the drug metabolizer CYP2D6 gene in the Colombian population. Meth Find Exp Clin Pharmacol 22(9):695–705CrossRefGoogle Scholar
  60. 60.
    Mizutani T (2003) PM frequencies of major CYPs in Asians and Caucasians. Drug Metab Rev 35(2–3):99–106PubMedCrossRefGoogle Scholar
  61. 61.
    Xie HG, Kim RB, Wood AJ, Stein CM (2001) Molecular basis of ethnic differences in drug disposition and response. Ann Rev Pharm Toxicol 41:815–850PubMedCrossRefGoogle Scholar
  62. 62.
    Ozawa S, Soyama A, Saeki M, Fukushima-Uesaka H, Itoda M, Koyano S, Sai K, Ohno Y, Saito Y, Sawada J (2004) Ethnic differences in genetic polymorphisms of CYP2D6, CYP2C19, CYP3As and MDR1/ABCB1. Drug Metab Pharmacokin 19(2):83–95CrossRefGoogle Scholar
  63. 63.
    Cacabelos R, Llovo R, Fraile C, Fernández-Novoa L (2007) Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res 4(4):479–500PubMedCrossRefGoogle Scholar
  64. 64.
    Haufroid V (2011) Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCC2 and their impact on drug disposition. Curr Drug Targets 12(5):631–646PubMedCrossRefGoogle Scholar
  65. 65.
    Marquez B, Van Bambeke F (2011) ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug Interactions. Curr Drug Targets 12(5):600–620PubMedCrossRefGoogle Scholar
  66. 66.
    Weinshilboum RM, Wang L (2006) Pharmacogenetics and pharmacogenomics: development, science, and translation. Ann Rev Genomics Hum Genet 7:223–245CrossRefGoogle Scholar
  67. 67.
    Hosoya K, Tachikawa M (2011) Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins. Clin Exp Nephrol 15(4):478–585PubMedCrossRefGoogle Scholar
  68. 68.
    Ensembl [homepage on the internet]. Hinxton, UK: European Bioinformatics Institute and Wellcome Trust Sanger Institute.http://www.ensembl.org/index.html. Accessed 19 July 2013
  69. 69.
    Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 39(1):17–23. http://www.alzgene.org/. Accessed 2 April 2013PubMedCrossRefGoogle Scholar
  70. 70.
    Carl SM, Lindley DJ, Couraud PO, Weksler BB, Romero I, Mowery SA, Knipp GT (2010) ANC and SLC transporter expression and Pot substrate characterization across the human CMEC/D3 blood-brain barrier cell line. Mol Pharm 7(4):1057–1068PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Cacabelos R (2005) Pharmacogenomics and therapeutic prospects in Alzheimer’s disease. Exp Opin Pharmacother 6:1967–1987CrossRefGoogle Scholar
  72. 72.
    Selkoe DJ, Podlisny MB (2002) Deciphering the genetic basis of Alzheimer’s disease. Annu Rev Genomics Hum Genet 3:67–99PubMedCrossRefGoogle Scholar
  73. 73.
    Suh YH, Checler F (2002) Amyloid precursor protein, presenilins, and α synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease. Pharmacol Rev 54(3):469–525PubMedCrossRefGoogle Scholar
  74. 74.
    Lesage S, Le Ber I, Condroyer C, Broussolle E, Gabelle A, Thobois S, Pasquier F, Mondon K, Dion PA, Rochefort D, Rouleau GA, Dürr A, Brice A, French Parkinson’s Disease Genetics (PDG) Study Group (2013) C9orf72 repeat expansions are a rare genetic cause of parkinsonism. Brain 136(Pt 2):385–391PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Proukakis C, Dudzik CG, Brier T, Mackay DS, Cooper JM, Millhauser GL, Houlden H, Schapira AH (2013) A novel α-synuclein missense mutation in Parkinson disease. Neurology 80(11):1062–1064.PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Ross OA (2013) A prognostic view on the application of individualized genomics in Parkinson’s disease. Curr Genet Med Rep 1(1):52–57.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Singleton AB, Farrer MJ, Bonifati V (2013) The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord 28(1):14–23.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Puschmann A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19(4):407–415PubMedCrossRefGoogle Scholar
  79. 79.
    Sprenger F, Poewe W (2013) Management of motor and non-motor symptoms in Parkinson’s disease. CNS Drugs 27(4):259–272Google Scholar
  80. 80.
    Am OB, Amit T, Youdin MBH (2004) Contrasting neuroprotective and neurotoxic actions of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neurosci Lett 355(3):169–172PubMedCrossRefGoogle Scholar
  81. 81.
    Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309PubMedCrossRefGoogle Scholar
  82. 82.
    Hardiman O, van den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):639–649PubMedCrossRefGoogle Scholar
  83. 83.
    Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7(11):603–615PubMedCrossRefGoogle Scholar
  84. 84.
    Majounie E, Renton AE, Mok K et al. Chromosome 9-ALS/FTD Consortium; French research network on FTLD/FTLD/ALS; ITALSGEN Consortium (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11(4):323–330PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Gibson SB, Bromberg MB (2012) Amyotrophic lateral sclerosis: drug therapy from the bench to the bedside. Semin Neurol 32(3):173–178.PubMedCrossRefGoogle Scholar
  86. 86.
    Paratore S, Pezzino S, Cavallaro S (2012) Identification of pharmacological targets in amyotrophic lateral sclerosis through genomic analysis of deregulated genes and pathways. Curr Genomics 13(4):321–333PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Love S (2006) Demyelinating diseases. J Clin Pathol 59(11):1151–1159PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Mero IL, Gustavsen MW, Sæther HS, Flåm ST, Berg-Hansen P, Søndergaard HB, Jensen PE, Berge T, Bjølgerud A, Muggerud A, Aarseth JH, International Multiple Sclerosis Genetics Consortium, Myhr KM, Celius EG, Sellebjerg F, Hillert J, Alfredsson L, Olsson T, Oturai AB, Kockum I, Lie BA, Andreassen BK, Harbo HF (2013) Oligoclonal band status in scandinavian multiple sclerosis patients is associated with specific genetic risk alleles. PLoS One 8(3):e58352. doi:10.1371/journal.pone.0058352PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Vandenbroeck K, Urcelay E, Comabella M (2010) IFN-beta pharmacogenomics in multiple sclerosis. Pharmacogenomics 11(8):1137–1148PubMedCrossRefGoogle Scholar
  90. 90.
    van Baarsen LGM, Vosslamber S, Tijssen M, Baggen JM, van der Voort LF, Killestein J, van der Pouw Kraan TC, Polman CH, Verweij CL (2008) Pharmacogenomics of interferon-ß therapy in multiple sclerosis: baseline IFN signature determines pharmacological differences between patients. PLoS One 3(4):e1927PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Harris JM, Fraser J, Fahn S (2007) Genetics of movement disorders. In: Rosenberg RN, Dimauro S, Paulson HL, Ptácek L, Nestler EJ (eds) The molecular and genetic basis of neurologic and psychiatric disease, 4th ed. Lippincott Williams & Philadelphia, USA pp 346–349Google Scholar
  92. 92.
    Killoran A, Biglan KM (2012) Therapeutics in Huntington’s disease. Curr Treat Options Neurol 14(2):137-149Google Scholar
  93. 93.
    Need AC, Motulsky AG, Goldstein DB (2005) Priorities and standards in pharmacogenetic research. Nat Genet 37(7):671–681PubMedCrossRefGoogle Scholar
  94. 94.
    Johnson AD, Wang S, Sadee W (2005) Polymorphisms affecting gene regulation and mRNA processing: broad implications for pharmacogenetics. Pharmacol Ther 106(1):19–38PubMedCrossRefGoogle Scholar
  95. 95.
    Ishikawa T, Onishi Y, Hirano H, Oosumi K, Nagakura M, Tarui S (2004) Pharmacogenomics of drug transporters: a new approach to functional analysis of the genetic polymorphisms of ABCB1 (P-glycoprotein/MDR1). Biol Pharm Bull 27(7):939–948PubMedCrossRefGoogle Scholar
  96. 96.
    Nishimura M, Naito S (2008) Tissue-specific mRNA expression profiles of human solute carrier transporter superfamilies. Drug Metab Pharmacokin 23(1):22–44CrossRefGoogle Scholar
  97. 97.
    Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Leung RK, Whittaker PA (2005) RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 107(2):222–239PubMedCrossRefGoogle Scholar
  99. 99.
    Gonzalez-Alegre P (2007) Therapeutic RNA interference for neurodegenerative diseases: from promise to progress. Pharmacol Ther 114(1):34–55PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ramón Cacabelos
    • 1
    • 2
    Email author
  • Clara Torrellas
    • 1
    • 2
  • Pablo Cacabelos
    • 1
    • 2
  • María J. Villanueva
    • 2
  • Sergio Piñeiro
    • 2
  • Cristina Solveira
    • 2
  1. 1.Genomic MedicineCamilo José Cela UniversityMadridSpain
  2. 2.EuroEspes Biomedical Research CenterInstitute of Medical Science and Genomic MedicineCorunnaSpain

Personalised recommendations