Advertisement

Pharmacogenetics of Adverse Drug Reactions

  • Richard Myles TurnerEmail author
  • Munir Pirmohamed
Chapter
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 9)

Abstract

A large variation in drug response exists between patients, with susceptible individuals being at risk of experiencing an adverse drug reaction (ADR). This susceptibility is attributable to environmental, clinical and genetic factors although the contribution of each varies with the drug, ADR and ethnicity. The variation in drug response makes personalisation of pharmacological therapy appealing to minimise ADRs whilst promoting efficacy. Pharmacogenetics seeks to contribute through genetic-guided drug and dose selection strategies. ADR pharmacogenetics was first highlighted in the 1950s, but it is only in the last decade that it has seen a rapid expansion, aided by significant advances in our knowledge of the human genome and improved genotyping technologies. ADRs can be classified according to whether the dominant mechanism is immune- or nonimmune-mediated. Several ADRs have been strongly associated with specific human leukocyte antigen (HLA) alleles. There is growing evidence for a central role of these alleles in the pathogenesis of immune-mediated delayed hypersensitivity ADRs through facilitation of ‘off-target’ interactions that lead to the presentation of ‘altered self,’ drugs and/or their metabolites to the T-cell receptor in an HLA-restricted fashion. Genetic variation can also predispose to nonimmune-mediated ADRs through perturbing drug pharmacokinetics or by altering nonimmune pharmacodynamic processes. In particular, genetic variants of phase I and phase II biotransformation enzymes and drug transporters alter the availability of a drug at the site(s) responsible for the ADR. Depending on the drug and ADR, these sites may be the therapeutic target site, the same molecular site in another tissue or distinct off-target sites. A prominent example of pharmacogenetics improving drug safety and enhancing the cost-effective use of limited healthcare resources is the reduction in the incidence of the abacavir hypersensitivity syndrome . It is apparent though that the success of ameliorating the abacavir hypersensitivity syndrome by genetic screening is proving difficult to emulate for other drug-ADR combinations. This highlights the considerable hurdles encountered in translating a pharmacogenetic association into a clinical test that benefits patient safety. The development of international consortia alongside the potential of next generation sequencing technologies and other innovations offer tantalising prospects for future advances in pharmacogenetics to reduce the burden of ADRs.

Keywords

Adverse drug reaction Pharmacogenetics Predictive genotyping Translation Abacavir Hypersensitivity Malignant hyperthermia Codeine Warfarin Statin 

References

  1. 1.
    Roden DM, Johnson JA, Kimmel SE, Krauss RM, Medina MW, Shuldiner A, Wilke RA (2011) Cardiovascular pharmacogenomics. Circ Res 109(7):807–820. doi:10.1161/circresaha.110.230995PubMedCentralPubMedGoogle Scholar
  2. 2.
  3. 3.
    Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK, Breckenridge AM (2004) Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329(7456):15–19. doi:10.1136/bmj.329.7456.15PubMedCentralPubMedGoogle Scholar
  4. 4.
    Ahern F, Sahm LJ, Lynch D, McCarthy S (2014) Determining the frequency and preventability of adverse drug reaction-related admissions to an Irish University Hospital: a cross-sectional study. Emerg Med J 31(1):24–29. doi:10.1136/emermed-2012-201945Google Scholar
  5. 5.
    Conforti A, Costantini D, Zanetti F, Moretti U, Grezzana M, Leone R (2012) Adverse drug reactions in older patients: an Italian observational prospective hospital study. Drug Healthc Patient Saf 4:75–80. doi:10.2147/dhps.s29287PubMedCentralPubMedGoogle Scholar
  6. 6.
    Hopf Y, Watson M, Williams D (2008) Adverse-drug-reaction related admissions to a hospital in Scotland. Pharm World Sci 30(6):854–862. doi:10.1007/s11096-008-9240-5PubMedGoogle Scholar
  7. 7.
    Miranda V, Fede A, Nobuo M, Ayres V, Giglio A, Miranda M, Riechelmann RP (2011) Adverse drug reactions and drug interactions as causes of hospital admission in oncology. J Pain Symptom Manage 42(3):342–353. doi:10.1016/j.jpainsymman.2010.11.014PubMedGoogle Scholar
  8. 8.
    Ruiter R, Visser LE, Rodenburg EM, Trifirò G, Ziere G, Stricker BH (2012) Adverse drug reaction-related hospitalizations in persons aged 55 years and over: a population-based study in the Netherlands. Drugs Aging 29(3):225–232. doi:10.2165/11599430-000000000-00000PubMedGoogle Scholar
  9. 9.
    World Health Organisation, WHO Collaborating Centre for International Drug Monitoring (2002) The importance of pharmacovigilance–safety monitoring of medicinal products. http://whqlibdoc.who.int/hq/2002/a75646.pdf. Accessed 13 March 2015
  10. 10.
    European Medicines Agency (1995) Clinical safety data management: definitions and standards for expedited reporting. London CPMP/ICH/377/95. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002749.pdf. Accessed 13 March 2015
  11. 11.
    Gurwitz JH, Field TS, Avorn J, McCormick D, Jain S, Eckler M, Benser M, Edmondson AC, Bates DW (2000) Incidence and preventability of adverse drug events in nursing homes. Am J Med 109(2):87–94PubMedGoogle Scholar
  12. 12.
    National Coordinating Council for Medication Error Reporting and Prevention. What is a Medication Error? http://www.nccmerp.org/about-medication-errors. Accessed 13 March 2015
  13. 13.
    Edwards IR, Aronson JK (2000) Adverse drug reactions: definitions, diagnosis, and management. Lancet 356(9237):1255–1259. doi:10.1016/s0140-6736(00)02799-9PubMedGoogle Scholar
  14. 14.
    Bates DW, Cullen DJ, Laird N, Petersen LA, Small SD, Servi D, Laffel G, Sweitzer BJ, Shea BF, Hallisey R (1995) Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE prevention study group. JAMA 274(1):29–34PubMedGoogle Scholar
  15. 15.
    Nebeker JR, Barach P, Samore MH (2004) Clarifying adverse drug events: a clinician’s guide to terminology, documentation, and reporting. Ann Intern Med 140(10):795–801PubMedGoogle Scholar
  16. 16.
    Davies EC, Green CF, Mottram DR, Pirmohamed M (2007) Adverse drug reactions in hospitals: a narrative review. Curr Drug Saf 2(1):79–87PubMedGoogle Scholar
  17. 17.
    Rawlins MD, Thompson JW (1977) Pathogenesis of adverse drug reactions. In: Davies DM (ed) Textbook of adverse drug reactions. Oxford University Press, Oxford, p. 10Google Scholar
  18. 18.
  19. 19.
    Aronson JK, Ferner RE (2003) Joining the DoTS: new approach to classifying adverse drug reactions. BMJ 327(7425):1222–1225. doi:10.1136/bmj.327.7425.1222PubMedCentralPubMedGoogle Scholar
  20. 20.
    Evrard A, Mbatchi L (2012) Genetic polymorphisms of drug metabolizing enzymes and transporters: the long way from bench to bedside. Curr Top Med Chem 12(15):1720–1729PubMedGoogle Scholar
  21. 21.
    Pirmohamed M (2010) Pharmacogenetics of idiosyncratic adverse drug reactions. Handb Exp Pharmacol 196:477–491. doi:10.1007/978-3-642-00663-0_17PubMedGoogle Scholar
  22. 22.
    Mallal S, Nolan D, Witt C, Masel G, Martin AM, Moore C, Sayer D, Castley A, Mamotte C, Maxwell D, James I, Christiansen FT (2002) Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359(9308):727–732PubMedGoogle Scholar
  23. 23.
    Hetherington S, Hughes AR, Mosteller M, Shortino D, Baker KL, Spreen W, Lai E, Davies K, Handley A, Dow DJ, Fling ME, Stocum M, Bowman C, Thurmond LM, Roses AD (2002) Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359(9312):1121–1122. doi:10.1016/s0140-6736(02)08158-8PubMedGoogle Scholar
  24. 24.
    Hung S-I, Chung W-H, Liou L-B, Chu C-C, Lin M, Huang H-P, Lin Y-L, Lan J-L, Yang L-C, Hong H-S, Chen M-J, Lai P-C, Wu M-S, Chu C-Y, Wang K-H, Chen C-H, Fann CSJ, Wu J-Y, Chen Y-T (2005) HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A 102(11):4134–4139. doi:10.1073/pnas.0409500102PubMedCentralPubMedGoogle Scholar
  25. 25.
    Kang H-R, Jee YK, Kim Y-S, Lee CH, Jung J-W, Kim SH, Park H-W, Chang Y-S, Jang I-J, Cho S-H, Min K-U, Kim S-H, Lee KW (2011) Positive and negative associations of HLA class I alleles with allopurinol-induced SCARs in Koreans. Pharmacogenet Genomics 21(5):303–307. doi:10.1097/FPC.0b013e32834282b8PubMedGoogle Scholar
  26. 26.
    Kim S-H, Lee KW, Song W-J, Kim S-H, Jee Y-K, Lee S-M, Kang H-R, Park H-W, Cho S-H, Park S-H, Min K-U, Chang Y-S (2011) Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans. Epilepsy Res 97(1–2):190–197. doi:10.1016/j.eplepsyres.2011.08.010PubMedGoogle Scholar
  27. 27.
    McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, Sills GJ, Marson T, Jia X, de Bakker PIW, Chinthapalli K, Molokhia M, Johnson MR, O'Connor GD, Chaila E, Alhusaini S, Shianna KV, Radtke RA, Heinzen EL, Walley N, Pandolfo M, Pichler W, Park BK, Depondt C, Sisodiya SM, Goldstein DB, Deloukas P, Delanty N, Cavalleri GL, Pirmohamed M (2011) HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 364(12):1134–1143. doi:10.1056/NEJMoa1013297PubMedCentralPubMedGoogle Scholar
  28. 28.
    Littera R, Carcassi C, Masala A, Piano P, Serra P, Ortu F, Corso N, Casula B, Nasa G L, Contu L, Manconi PE (2006) HLA-dependent hypersensitivity to nevirapine in Sardinian HIV patients. AIDS 20(12):1621–1626. doi:10.1097/01.aids.0000238408.82947.09PubMedGoogle Scholar
  29. 29.
    Gatanaga H, Yazaki H, Tanuma J, Honda M, Genka I, Teruya K, Tachikawa N, Kikuchi Y, Oka S (2007) HLA-Cw8 primarily associated with hypersensitivity to nevirapine. AIDS 21(2):264–265. doi:10.1097/QAD.0b013e32801199d9PubMedGoogle Scholar
  30. 30.
    Chantarangsu S, Mushiroda T, Mahasirimongkol S, Kiertiburanakul S, Sungkanuparph S, Manosuthi W, Tantisiriwat W, Charoenyingwattana A, Sura T, Chantratita W, Nakamura Y (2009) HLA-B*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients. Pharmacogenet Genomics 19(2):139–146. doi:10.1097/FPC.0b013e32831d0fafPubMedGoogle Scholar
  31. 31.
    Tassaneeyakul W, Jantararoungtong T, Chen P, Lin P-Y, Tiamkao S, Khunarkornsiri U, Chucherd P, Konyoung P, Vannaprasaht S, Choonhakarn C, Pisuttimarn P, Sangviroon A, Tassaneeyakul W (2009) Strong association between HLA-B*5801 and allopurinol-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in a Thai population. Pharmacogenet Genomics 19(9):704–709. doi:10.1097/FPC.0b013e328330a3b8PubMedGoogle Scholar
  32. 32.
    Chung W-H, Hung S-I, Hong H-S, Hsih M-S, Yang L-C, Ho H-C, Wu J-Y, Chen Y-T (2004) Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428(6982):486. doi:10.1038/428486aGoogle Scholar
  33. 33.
    Locharernkul C, Loplumlert J, Limotai C, Korkij W, Desudchit T, Tongkobpetch S, Kangwanshiratada O, Hirankarn N, Suphapeetiporn K, Shotelersuk V (2008) Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia 49(12):2087–2091. doi:10.1111/j.1528-1167.2008.01719.xPubMedGoogle Scholar
  34. 34.
    Yip VL, Marson AG, Jorgensen AL, Pirmohamed M, Alfirevic A (2012) HLA genotype and carbamazepine-induced cutaneous adverse drug reactions: a systematic review. Clin Pharmacol Ther 92(6):757–765. doi:10.1038/clpt.2012.189PubMedGoogle Scholar
  35. 35.
    Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S, Naldi L, Bouwes-Bavinck J-N, Sidoroff A, de Toma C, Schumacher M, Roujeau J-C, Hovnanian A, Mockenhaupt M (2008) A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 18(2):99–107. doi:10.1097/FPC.0b013e3282f3ef9cPubMedGoogle Scholar
  36. 36.
    Kim S-H, Kim M, Lee KW, Kim S-H, Kang H-R, Park H-W, Jee Y-K (2010) HLA-B*5901 is strongly associated with methazolamide-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Pharmacogenomics 11(6):879–884. doi:10.2217/pgs.10.54PubMedGoogle Scholar
  37. 37.
    Carr DF, Chaponda M, Jorgensen AL, Castro EC, van Oosterhout JJ, Khoo SH, Lalloo DG, Heyderman RS, Alfirevic A, Pirmohamed M (2013) Association of human leukocyte antigen alleles and nevirapine hypersensitivity in a Malawian HIV-infected population. Clin Infect Dis 56(9):1330–1339. doi:10.1093/cid/cit021Google Scholar
  38. 38.
    Hung S-I, Chung W-H, Liu Z-S, Chen C-H, Hsih M-S, Hui RC-y, Chu C-Y, Chen Y-T (2010) Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 11(3):349–356. doi:10.2217/pgs.09.162PubMedGoogle Scholar
  39. 39.
    Cao Z-h, Wei Z-y, Zhu Q-y, Zhang J-y, Yang L, Qin S-y, Shao L-y, Zhang Y-t, Xuan J-k, Q-l L, Xu J-H, Xu F, Ma L, Huang H-y, Xing Q-h, Luo X-q (2012) HLA-B*58:01 allele is associated with augmented risk for both mild and severe cutaneous adverse reactions induced by allopurinol in Han Chinese. Pharmacogenomics 13(10):1193–1201. doi:10.2217/pgs.12.89PubMedGoogle Scholar
  40. 40.
    Romano A, De Santis A, Romito A, Fonso M D, Venuti A, Gasbarrini GB, Manna R (1998) Delayed hypersensitivity to aminopenicillins is related to major histocompatibility complex genes. Ann Allergy Asthma Immunol 80(5):433–437PubMedGoogle Scholar
  41. 41.
    Hung S-I, Chung W-H, Jee S-H, Chen W-C, Chang Y-T, Lee W-R, Hu S-L, Wu M-T, Chen G-S, Wong T-W, Hsiao P-F, Chen W-H, Shih H-Y, Fang W-H, Wei C-Y, Lou Y-H, Huang Y-L, Lin J-J, Chen Y-T (2006) Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 16(4):297–306. doi:10.1097/01.fpc.0000199500.46842.4aPubMedGoogle Scholar
  42. 42.
    Vitezica ZG, Milpied B, Lonjou C, Borot N, Ledger TN, Lefebvre A, Hovnanian A (2008) HLA-DRB1*01 associated with cutaneous hypersensitivity induced by nevirapine and efavirenz. AIDS 22(4):540–541. doi:10.1097/QAD.0b013e3282f37812PubMedGoogle Scholar
  43. 43.
    Likanonsakul S, Rattanatham T, Feangvad S, Uttayamakul S, Prasithsirikul W, Tunthanathip P, Nakayama EE, Shioda T (2009) HLA-Cw*04 allele associated with nevirapine-induced rash in HIV-infected Thai patients. AIDS Res Ther 6:22. doi:10.1186/1742-6405-6-22Google Scholar
  44. 44.
    Sharma SK, Balamurugan A, Saha PK, Pandey RM, Mehra NK (2002) Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am J Respir Crit Care Med 166(7):916–919PubMedGoogle Scholar
  45. 45.
    Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, Day CP, Ruiz-Cabello F, Donaldson PT, Stephens C, Pirmohamed M, Romero-Gomez M, Navarro JM, Fontana RJ, Miller M, Groome M, Bondon-Guitton E, Conforti A, Stricker BHC, Carvajal A, Ibanez L, Yue Q-Y, Eichelbaum M, Floratos A, Pe'er I, Daly MJ, Goldstein DB, Dillon JF, Nelson MR, Watkins PB, Daly AK (2011) Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 141(1):338–347. doi:10.1053/j.gastro.2011.04.001PubMedCentralPubMedGoogle Scholar
  46. 46.
    O’Donohue J, Oien KA, Donaldson P, Underhill J, Clare M, MacSween RN, Mills PR (2000) Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 47(5):717–720PubMedCentralPubMedGoogle Scholar
  47. 47.
    Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, Daly MJ, Goldstein DB, John S, Nelson MR, Graham J, Park BK, Dillon JF, Bernal W, Cordell HJ, Pirmohamed M, Aithal GP, Day CP (2009) HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41(7):816–819. doi:10.1038/ng.379PubMedGoogle Scholar
  48. 48.
    Spraggs CF, Budde LR, Briley LP, Bing N, Cox CJ, King KS, Whittaker JC, Mooser VE, Preston AJ, Stein SH, Cardon LR (2011) HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 29(6):667–673. doi:10.1200/jco.2010.31.3197PubMedGoogle Scholar
  49. 49.
    Singer JB, Lewitzky S, Leroy E, Yang F, Zhao X, Klickstein L, Wright TM, Meyer J, Paulding CA (2010) A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 42(8):711–714. doi:10.1038/ng.632PubMedGoogle Scholar
  50. 50.
    Yuan J, Guo S, Hall D, Cammett AM, Jayadev S, Distel M, Storfer S, Huang Z, Mootsikapun P, Ruxrungtham K, Podzamczer D, Haas DW (2011) Toxicogenomics of nevirapine-associated cutaneous and hepatic adverse events among populations of African, Asian, and European descent. AIDS 25(10):1271–1280. doi:10.1097/QAD.0b013e32834779dfPubMedCentralPubMedGoogle Scholar
  51. 51.
    Hirata K, Takagi H, Yamamoto M, Matsumoto T, Nishiya T, Mori K, Shimizu S, Masumoto H, Okutani Y (2008) Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case-control study. Pharmacogenomics J 8(1):29–33. doi:10.1038/sj.tpj.6500442PubMedGoogle Scholar
  52. 52.
    Ariyoshi N, Iga Y, Hirata K, Sato Y, Miura G, Ishii I, Nagamori S, Kitada M (2010) Enhanced susceptibility of HLA-mediated ticlopidine-induced idiosyncratic hepatotoxicity by CYP2B6 polymorphism in Japanese. Drug Metab Pharmacokinet 25(3):298–306PubMedGoogle Scholar
  53. 53.
    Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF, Andersson TB, Carlsson S, Cederbrant KE, Gibson NJ, Armstrong M, Lagerström-Fermér ME, Dellsén A, Brown EM, Thornton M, Dukes C, Jenkins SC, Firth MA, Harrod GO, Pinel TH, Billing-Clason SME, Cardon LR, March RE (2008) Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 8(3):186–195. doi:10.1038/sj.tpj.6500458PubMedGoogle Scholar
  54. 54.
    Athanasiou MC, Dettling M, Cascorbi I, Mosyagin I, Salisbury BA, Pierz KA, Zou W, Whalen H, Malhotra AK, Lencz T, Gerson SL, Kane JM, Reed CR (2011) Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis. J Clin Psychiatry 72(4):458–463. doi:10.4088/JCP.09m05527yelPubMedGoogle Scholar
  55. 55.
    Diez RA (1990) HLA-B27 and agranulocytosis by levamisole. Immunol Today 11(8):270PubMedGoogle Scholar
  56. 56.
    Lee HY, Lee JW, Lee KW, Park MH, Park HS (2009) The HLA allele marker for differentiating ASA hypersensitivity phenotypes. Allergy 64(9):1385–1387. doi:10.1111/j.1398-9995.2009.02048.xPubMedGoogle Scholar
  57. 57.
    Kim S-H, Hur G-Y, Choi J-H, Park H-S (2008) Pharmacogenetics of aspirin-intolerant asthma. Pharmacogenomics 9(1):85–91. doi:10.2217/14622416.9.1.85PubMedGoogle Scholar
  58. 58.
    Hakala M, van Assendelft AH, Ilonen J, Jalava S, Tiilikainen A (1986) Association of different HLA antigens with various toxic effects of gold salts in rheumatoid arthritis. Ann Rheum Dis 45(3):177–182PubMedCentralPubMedGoogle Scholar
  59. 59.
    Shah P, Griffith SM, Shadforth MF, Fisher J, Dawes PT, Poulton KV, Thomson W, Ollier WER, Mattey DL (2004) Can gold therapy be used more safely in rheumatoid arthritis? Adverse drug reactions are more likely in patients with nodular disease, independent of HLA-DR3 status. J Rheumatol 31(10):1903–1905PubMedGoogle Scholar
  60. 60.
    Erlich H (2012) HLA DNA typing: past, present, and future. Tissue Antigens 80(1):1–11. doi:10.1111/j.1399-0039.2012.01881.xPubMedGoogle Scholar
  61. 61.
    Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC Jr, Wright MW, Wain HM, Trowsdale J, Ziegler A, Beck S (2004) Gene map of the extended human MHC. Nat Rev Genet 5(12):889–899. doi:10.1038/nrg1489PubMedGoogle Scholar
  62. 62.
    Bharadwaj M, Illing P, Theodossis A, Purcell AW, Rossjohn J, McCluskey J (2012) Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Annu Rev Pharmacol Toxicol 52:401–431. doi:10.1146/annurev-pharmtox-010611-134701PubMedGoogle Scholar
  63. 63.
    Joffre OP, Segura E, Savina A, Amigorena S (2012) Cross-presentation by dendritic cells. Nat Rev Immunol 12(8):557–569. doi:10.1038/nri3254PubMedGoogle Scholar
  64. 64.
    Reche PA, Reinherz EL (2003) Sequence variability analysis of human class I and class II MHC molecules: functional and structural correlates of amino acid polymorphisms. J Mol Biol 331(3):623–641PubMedGoogle Scholar
  65. 65.
    Illing PT, Vivian JP, Purcell AW, Rossjohn J, McCluskey J (2013) Human leukocyte antigen-associated drug hypersensitivity. Curr Opin Immunol 25(1):81–89. doi:10.1016/j.coi.2012.10.002PubMedGoogle Scholar
  66. 66.
    Kurkó J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z (2013) Genetics of rheumatoid arthritis—a comprehensive review. Clin Rev Allergy Immunol 45(2):170-179. doi:10.1007/s12016-012-8346-7Google Scholar
  67. 67.
    Hetherington S, McGuirk S, Powell G, Cutrell A, Naderer O, Spreen B, Lafon S, Pearce G, Steel H (2001) Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin Ther 23(10):1603–1614PubMedGoogle Scholar
  68. 68.
    Pichler W, Yawalkar N, Schmid S, Helbling A (2002) Pathogenesis of drug-induced exanthems. Allergy 57(10):884–893PubMedGoogle Scholar
  69. 69.
    Nassif A, Bensussan A, Boumsell L, Deniaud A, Moslehi H, Wolkenstein P, Bagot M, Roujeau J-C (2004) Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol 114(5):1209–1215. doi:10.1016/j.jaci.2004.07.047PubMedGoogle Scholar
  70. 70.
    Phillips EJ, Sullivan JR, Knowles SR, Shear NH (2002) Utility of patch testing in patients with hypersensitivity syndromes associated with abacavir. AIDS 16(16):2223–2225PubMedGoogle Scholar
  71. 71.
    Alfirevic A, Park BK, Pirmohamed M, Naisbitt DJ (2012) Research highlights: explanation for HLA-B*57:01-linked immune-mediated abacavir-induced hypersensitivity. Pharmacogenomics 13(14):1567–1569. doi:10.2217/pgs.12.146PubMedGoogle Scholar
  72. 72.
    Park BK, Naisbitt DJ, Gordon SF, Kitteringham NR, Pirmohamed M (2001) Metabolic activation in drug allergies. Toxicology 158(1–2):11–23PubMedGoogle Scholar
  73. 73.
    Pichler WJ, Beeler A, Keller M, Lerch M, Posadas S, Schmid D, Spanou Z, Zawodniak A, Gerber B (2006) Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int 55(1):17–25. doi:10.2332/allergolint.55.17PubMedGoogle Scholar
  74. 74.
    Pirmohamed M, Naisbitt DJ, Gordon F, Park BK (2002) The danger hypothesis-potential role in idiosyncratic drug reactions. Toxicology 181-182:55–63PubMedGoogle Scholar
  75. 75.
    Alfirevic A, Pirmohamed M (2010) Drug-induced hypersensitivity reactions and pharmacogenomics: past, present and future. Pharmacogenomics 11(4):497–499. doi:10.2217/pgs.10.12PubMedGoogle Scholar
  76. 76.
    Chaponda M, Pirmohamed M (2011) Hypersensitivity reactions to HIV therapy. Br J Clin Pharmacol 71(5):659–671. doi:10.1111/j.1365-2125.2010.03784.xPubMedCentralPubMedGoogle Scholar
  77. 77.
    Mallal S, Phillips E, Carosi G, Molina J-M, Workman C, Tomazic J, Jägel-Guedes E, Rugina S, Kozyrev O, Cid JF, Hay P, Nolan D, Hughes S, Hughes A, Ryan S, Fitch N, Thorborn D, Benbow A (2008) HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358(6):568–579. doi:10.1056/NEJMoa0706135PubMedGoogle Scholar
  78. 78.
    Phillips EJ, Mallal SA (2010) Pharmacogenetics of drug hypersensitivity. Pharmacogenomics 11(7):973–987. doi:10.2217/pgs.10.77PubMedCentralPubMedGoogle Scholar
  79. 79.
    Hughes AR, Mosteller M, Bansal AT, Davies K, Haneline SA, Lai EH, Nangle K, Scott T, Spreen WR, Warren LL, Roses AD (2004) Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics 5(2):203–211. doi:10.1517/phgs.5.2.203.27481PubMedGoogle Scholar
  80. 80.
    Hughes DA, Vilar FJ, Ward CC, Alfirevic A, Park BK, Pirmohamed M (2004) Cost-effectiveness analysis of HLA B*5701 genotyping in preventing abacavir hypersensitivity. Pharmacogenetics 14(6):335–342PubMedGoogle Scholar
  81. 81.
    Saag M, Balu R, Phillips E, Brachman P, Martorell C, Burman W, Stancil B, Mosteller M, Brothers C, Wannamaker P, Hughes A, Sutherland-Phillips D, Mallal S, Shaefer M (2008) High sensitivity of human leukocyte antigen-b*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin Infect Dis 46(7):1111–1118. doi:10.1086/529382PubMedGoogle Scholar
  82. 82.
    Dervieux T, Bala MV (2006) Overview of the pharmacoeconomics of pharmacogenetics. Pharmacogenomics 7(8):1175–1184. doi:10.2217/14622416.7.8.1175PubMedGoogle Scholar
  83. 83.
    Schackman BR, Scott CA, Walensky RP, Losina E, Freedberg KA, Sax PE (2008) The cost-effectiveness of HLA-B*5701 genetic screening to guide initial antiretroviral therapy for HIV. AIDS 22(15):2025–2033. doi:10.1097/QAD.0b013e3283103ce6PubMedCentralPubMedGoogle Scholar
  84. 84.
    Lalonde RG, Thomas R, Rachlis A, Gill MJ, Roger M, Angel JB, Smith G, Higgins N, Trottier B (2010) Successful implementation of a national HLA-B*5701 genetic testing service in Canada. Tissue Antigens 75(1):12–18. doi:10.1111/j.1399-0039.2009.01383.xPubMedGoogle Scholar
  85. 85.
    Rauch A, Nolan D, Martin A, McKinnon E, Almeida C, Mallal S (2006) Prospective genetic screening decreases the incidence of abacavir hypersensitivity reactions in the Western Australian HIV cohort study. Clin Infect Dis 43(1):99–102. doi:10.1086/504874PubMedGoogle Scholar
  86. 86.
    Waters LJ, Mandalia S, Gazzard B, Nelson M (2007) Prospective HLA-B*5701 screening and abacavir hypersensitivity: a single centre experience. AIDS 21(18):2533–2534. doi:10.1097/QAD.0b013e328273bc07PubMedGoogle Scholar
  87. 87.
    Zucman D, Truchis Pd, Majerholc C, Stegman S, Caillat-Zucman S (2007) Prospective screening for human leukocyte antigen-B*5701 avoids abacavir hypersensitivity reaction in the ethnically mixed French HIV population. J Acquir Immune Defic Syndr 45(1):1–3. doi:10.1097/QAI.0b013e318046ea31PubMedGoogle Scholar
  88. 88.
    Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, Miles JJ, Kjer-Nielsen L, Gras S, Williamson NA, Burrows SR, Purcell AW, Rossjohn J, McCluskey J (2012) Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486(7404):554–558. doi:10.1038/nature11147PubMedGoogle Scholar
  89. 89.
    Ostrov DA, Grant BJ, Pompeu YA, Sidney J, Harndahl M, Southwood S, Oseroff C, Lu S, Jakoncic J, de Oliveira CAF, Yang L, Mei H, Shi L, Shabanowitz J, English AM, Wriston A, Lucas A, Phillips E, Mallal S, Grey HM, Sette A, Hunt DF, Buus S, Peters B (2012) Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc Natl Acad Sci U S A 109(25):9959–9964. doi:10.1073/pnas.1207934109PubMedCentralPubMedGoogle Scholar
  90. 90.
    Norcross MA, Luo S, Lu L, Boyne MT, Gomarteli M, Rennels AD, Woodcock J, Margulies DH, McMurtrey C, Vernon S, Hildebrand WH, Buchli R (2012) Abacavir induces loading of novel self-peptides into HLA-B*57: 01: an autoimmune model for HLA-associated drug hypersensitivity. AIDS 26(11):F21–29. doi:10.1097/QAD.0b013e328355fe8fPubMedCentralPubMedGoogle Scholar
  91. 91.
    Adam J, Eriksson KK, Schnyder B, Fontana S, Pichler WJ, Yerly D (2012) Avidity determines T-cell reactivity in abacavir hypersensitivity. Eur J Immunol 42(7):1706–1716. doi:10.1002/eji.201142159PubMedGoogle Scholar
  92. 92.
    Picard D, Janela B, Descamps V, D'Incan M, Courville P, Jacquot S, Rogez S, Mardivirin L, Moins-Teisserenc H, Toubert A, Benichou J, Joly P, Musette P (2010) Drug reaction with eosinophilia and systemic symptoms (DRESS): a multiorgan antiviral T cell response. Sci Transl Med 2(46):46ra62. doi:10.1126/scitranslmed.3001116Google Scholar
  93. 93.
    Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW, Cramp C, Cockerell OC, Cooper PN, Doughty J, Eaton B, Gamble C, Goulding PJ, Howell SJL, Hughes A, Jackson M, Jacoby A, Kellett M, Lawson GR, Leach JP, Nicolaides P, Roberts R, Shackley P, Shen J, Smith DF, Smith PEM, Smith CT, Vanoli A, Williamson PR (2007) The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet 369(9566):1000–1015. doi:10.1016/s0140-6736(07)60460-7PubMedCentralPubMedGoogle Scholar
  94. 94.
    Pirmohamed M, Friedmann PS, Molokhia M, Loke YK, Smith C, Phillips E, Grenade L L, Carleton B, Papaluca-Amati M, Demoly P, Shear NH (2011) Phenotype standardization for immune-mediated drug-induced skin injury. Clin Pharmacol Ther 89(6):896–901. doi:10.1038/clpt.2011.79PubMedGoogle Scholar
  95. 95.
    Roujeau JC, Stern RS (1994) Severe adverse cutaneous reactions to drugs. N Engl J Med 331(19):1272–1285. doi:10.1056/nejm199411103311906PubMedGoogle Scholar
  96. 96.
    Profaizer T, Eckels D (2012) HLA alleles and drug hypersensitivity reactions. Int J Immunogenet 39(2):99–105. doi:10.1111/j.1744-313X.2011.01061.xPubMedGoogle Scholar
  97. 97.
    Criado PR, Avancini J, Santi CG, Medrado ATA, Rodrigues CE, de Carvalho JF (2012) Drug reaction with eosinophilia and systemic symptoms (DRESS): a complex interaction of drugs, viruses and the immune system. Isr Med Assoc J 14(9):577–582PubMedGoogle Scholar
  98. 98.
    Borchers AT, Lee JL, Naguwa SM, Cheema GS, Gershwin ME (2008) Stevens-Johnson syndrome and toxic epidermal necrolysis. Autoimmun Rev 7(8):598–605. doi:10.1016/j.autrev.2008.06.004PubMedGoogle Scholar
  99. 99.
    Bastuji-Garin S, Rzany B, Stern RS, Shear NH, Naldi L, Roujeau JC (1993) Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol 129(1):92–96PubMedGoogle Scholar
  100. 100.
    Ding WY, Lee CK, Choon SE (2010) Cutaneous adverse drug reactions seen in a tertiary hospital in Johor, Malaysia. Int J Dermatol 49(7):834–841. doi:10.1111/j.1365-4632.2010.04481.xPubMedGoogle Scholar
  101. 101.
    Kulkantrakorn K, Tassaneeyakul W, Tiamkao S, Jantararoungtong T, Prabmechai N, Vannaprasaht S, Chumworathayi P, Chen P, Sritipsukho P (2012) HLA-B*1502 strongly predicts carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Thai patients with neuropathic pain. Pain Pract 12(3):202–208. doi:10.1111/j.1533-2500.2011.00479.xPubMedGoogle Scholar
  102. 102.
    Mehta TY, Prajapati LM, Mittal B, Joshi CG, Sheth JJ, Patel DB, Dave DM, Goyal RK (2009) Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians. Indian J Dermatol Venereol Leprol 75(6):579–582. doi:10.4103/0378-6323.57718PubMedGoogle Scholar
  103. 103.
    Chen P, Lin J-J, Lu C-S, Ong C-T, Hsieh PF, Yang C-C, Tai C-T, Wu S-L, Lu C-H, Hsu Y-C, Yu H-Y, Ro L-S, Lu C-T, Chu C-C, Tsai J-J, Su Y-H, Lan S-H, Sung S-F, Lin S-Y, Chuang H-P, Huang L-C, Chen Y-J, Tsai P-J, Liao H-T, Lin Y-H, Chen C-H, Chung W-H, Hung S-I, Wu J-Y, Chang C-F, Chen L, Chen Y-T, Shen C-Y (2011) Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med 364(12):1126–1133. doi:10.1056/NEJMoa1009717PubMedGoogle Scholar
  104. 104.
    Alfirevic A, Jorgensen AL, Williamson PR, Chadwick DW, Park BK, Pirmohamed M (2006) HLA-B locus in Caucasian patients with carbamazepine hypersensitivity. Pharmacogenomics 7(6):813–818. doi:10.2217/14622416.7.6.813PubMedGoogle Scholar
  105. 105.
    Lonjou C, Thomas L, Borot N, Ledger N, de Toma C, LeLouet H, Graf E, Schumacher M, Hovnanian A, Mockenhaupt M, Roujeau JC (2006) A marker for Stevens-Johnson syndrome…: ethnicity matters. Pharmacogenomics J 6(4):265–268. doi:10.1038/sj.tpj.6500356PubMedGoogle Scholar
  106. 106.
    Ikeda H, Takahashi Y, Yamazaki E, Fujiwara T, Kaniwa N, Saito Y, Aihara M, Kashiwagi M, Muramatsu M (2010) HLA class I markers in Japanese patients with carbamazepine-induced cutaneous adverse reactions. Epilepsia 51(2):297–300. doi:10.1111/j.1528-1167.2009.02269.xPubMedGoogle Scholar
  107. 107.
    Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, Shirakata Y, Ikezawa Z, Iijima M, Shiohara T, Hashimoto K, Kamatani N, Nakamura Y (2011) Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 20(5):1034–1041. doi:10.1093/hmg/ddq537PubMedGoogle Scholar
  108. 108.
    Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, Furuya H, Takahashi Y, Muramatsu M, Kinoshita S, Abe M, Ikeda H, Kashiwagi M, Song Y, Ueta M, Sotozono C, Ikezawa Z, Hasegawa R (2010) HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia 51(12):2461–2465. doi:10.1111/j.1528-1167.2010.02766.xPubMedGoogle Scholar
  109. 109.
    Yun J, Adam J, Yerly D, Pichler WJ (2012) Human leukocyte antigens (HLA) associated drug hypersensitivity: consequences of drug binding to HLA. Allergy 67(11):1338–1346. doi:10.1111/all.12008PubMedGoogle Scholar
  110. 110.
    Wei C-Y, Chung W-H, Huang H-W, Chen Y-T, Hung S-I (2012) Direct interaction between HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson syndrome. J Allergy Clin Immunol 129(6):1562–1569.e1565. doi:10.1016/j.jaci.2011.12.990PubMedGoogle Scholar
  111. 111.
    Ko T-M, Chung W-H, Wei C-Y, Shih H-Y, Chen J-K, Lin C-H, Chen Y-T, Hung S-I (2011) Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol 128(6):1266–1276.e11. doi:10.1016/j.jaci.2011.08.013PubMedGoogle Scholar
  112. 112.
    Hershfield MS, Callaghan JT, Tassaneeyakul W, Mushiroda T, Thorn CF, Klein TE, Lee MTM (2013) Clinical Pharmacogenetics Implementation Consortium guidelines for human leukocyte antigen-B genotype and allopurinol dosing. Clin Pharmacol Ther 93(2):153–158. doi:10.1038/clpt.2012.209PubMedCentralPubMedGoogle Scholar
  113. 113.
    Halevy S, Ghislain P-D, Mockenhaupt M, Fagot J-P, Bouwes Bavinck JN, Sidoroff A, Naldi L, Dunant A, Viboud C, Roujeau J-C (2008) Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J Am Acad Dermatol 58(1):25–32. doi:10.1016/j.jaad.2007.08.036PubMedGoogle Scholar
  114. 114.
    Cacoub P, Musette P, Descamps V, Meyer O, Speirs C, Finzi L, Roujeau JC (2011) The DRESS syndrome: a literature review. Am J Med 124(7):588–597. doi:10.1016/j.amjmed.2011.01.017PubMedGoogle Scholar
  115. 115.
    Kaniwa N, Saito Y, Aihara M, Matsunaga K, Tohkin M, Kurose K, Sawada J-i, Furuya H, Takahashi Y, Muramatsu M, Kinoshita S, Abe M, Ikeda H, Kashiwagi M, Song Y, Ueta M, Sotozono C, Ikezawa Z, Hasegawa R (2008) HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 9(11):1617–1622. doi:10.2217/14622416.9.11.1617PubMedGoogle Scholar
  116. 116.
    Somkrua R, Eickman EE, Saokaew S, Lohitnavy M, Chaiyakunapruk N (2011) Association of HLA-B*5801 allele and allopurinol-induced Stevens Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. BMC Med Genet 12:118. doi:10.1186/1471-2350-12-118Google Scholar
  117. 117.
    Lee MH, Stocker SL, Anderson J, Phillips EJ, Nolan D, Williams KM, Graham GG, Sullivan JR, Day RO (2012) Initiating allopurinol therapy: do we need to know the patient’s human leucocyte antigen status? Intern Med J 42(4):411–416. doi:10.1111/j.1445-5994.2011.02567.xPubMedGoogle Scholar
  118. 118.
    Shiohara T, Inaoka M, Kano Y (2006) Drug-induced hypersensitivity syndrome (DIHS): a reaction induced by a complex interplay among herpesviruses and antiviral and antidrug immune responses. Allergol Int 55(1):1–8. doi:10.2332/allergolint.55.1PubMedGoogle Scholar
  119. 119.
    Chao J, Terkeltaub R (2009) A critical reappraisal of allopurinol dosing, safety, and efficacy for hyperuricemia in gout. Curr Rheumatol Rep 11(2):135–140PubMedGoogle Scholar
  120. 120.
    Russmann S, Kaye JA, Jick SS, Jick H (2005) Risk of cholestatic liver disease associated with flucloxacillin and flucloxacillin prescribing habits in the UK: cohort study using data from the UK general practice research database. Br J Clin Pharmacol 60(1):76–82. doi:10.1111/j.1365-2125.2005.02370.xPubMedCentralPubMedGoogle Scholar
  121. 121.
    Daly AK, Day CP (2012) Genetic association studies in drug-induced liver injury. Drug Metab Rev 44(1):116–126. doi:10.3109/03602532.2011.605790PubMedGoogle Scholar
  122. 122.
    Ostapowicz G, Fontana RJ, Schiødt FV, Larson A, Davern TJ, Han SHB, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM (2002) Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 137(12):947–954PubMedGoogle Scholar
  123. 123.
    Russo MW, Galanko JA, Shrestha R, Fried MW, Watkins P (2004) Liver transplantation for acute liver failure from drug induced liver injury in the United States. Liver Transpl 10(8):1018–1023. doi:10.1002/lt.20204PubMedGoogle Scholar
  124. 124.
    Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, Lenoir C, Lemoine A, Hillon P (2002) Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology 36(2):451–455. doi:10.1053/jhep.2002.34857PubMedGoogle Scholar
  125. 125.
    Aithal GP, Watkins PB, Andrade RJ, Larrey D, Molokhia M, Takikawa H, Hunt CM, Wilke RA, Avigan M, Kaplowitz N, Bjornsson E, Daly AK (2011) Case definition and phenotype standardization in drug-induced liver injury. Clin Pharmacol Ther 89(6):806–815. doi:10.1038/clpt.2011.58PubMedGoogle Scholar
  126. 126.
    Uetrecht J (2009) Immunoallergic drug-induced liver injury in humans. Semin Liver Dis 29(4):383–392. doi:10.1055/s-0029-1240007PubMedGoogle Scholar
  127. 127.
    Alfirevic A, Pirmohamed M (2012) Predictive genetic testing for drug-induced liver injury: considerations of clinical utility. Clin Pharmacol Ther 92(3):376–380. doi:10.1038/clpt.2012.107PubMedGoogle Scholar
  128. 128.
    Jenkins RE, Meng X, Elliott VL, Kitteringham NR, Pirmohamed M, Park BK (2009) Characterisation of flucloxacillin and 5-hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. Proteomics Clin Appl 3(6):720–729. doi:10.1002/prca.200800222PubMedGoogle Scholar
  129. 129.
    Monshi M, Faulkner L, Gibson A, Jenkins RE, Farrell J, Earnshaw CJ, Alfirevic A, Cederbrant K, Daly AK, French N, Pirmohamed M, Park BK, Naisbitt DJ (2013) HLA-B*57:01-restricted activation of drug-specific T-cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology 57(2):727–739. doi:10.1002/hep.26077Google Scholar
  130. 130.
    Li Y, Tang HL, Hu YF, Xie HG (2012) The gain-of-function variant allele CYP2C19*17: a double-edged sword between thrombosis and bleeding in clopidogrel-treated patients. J Thromb Haemost 10(2):199–206. doi:10.1111/j.1538-7836.2011.04570.xPubMedGoogle Scholar
  131. 131.
    Zabalza M, Subirana I, Sala J, Lluis-Ganella C, Lucas G, Tomás M, Masiá R, Marrugat J, Brugada R, Elosua R (2012) Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart 98(2):100–108. doi:10.1136/hrt.2011.227652PubMedGoogle Scholar
  132. 132.
    Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, Rettie AE (2002) Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287(13):1690–1698PubMedGoogle Scholar
  133. 133.
    Aithal GP, Day CP, Kesteven PJ, Daly AK (1999) Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353(9154):717–719. doi:10.1016/s0140-6736(98)04474-2PubMedGoogle Scholar
  134. 134.
    Limdi NA, McGwin G, Goldstein JA, Beasley TM, Arnett DK, Adler BK, Baird MF, Acton RT (2008) Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther 83(2):312–321. doi:10.1038/sj.clpt.6100290PubMedCentralPubMedGoogle Scholar
  135. 135.
    Yang J, Chen Y, Li X, Wei X, Chen X, Zhang L, Zhang Y, Xu Q, Wang H, Li Y, Lu C, Chen W, Zeng C, Yin T (2013) Influence of CYP2C9 and VKORC1 genotypes on the risk of hemorrhagic complications in warfarin-treated patients: a systematic review and meta-analysis. Int J Cardiol 168(4):4234–4243. doi:10.1016/j.ijcard.2013.07.151PubMedGoogle Scholar
  136. 136.
    Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, Desmeules J (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351(27):2827–2831. doi:10.1056/NEJMoa041888PubMedGoogle Scholar
  137. 137.
    Crews KR, Gaedigk A, Dunnenberger HM, Klein TE, Shen DD, Callaghan JT, Kharasch ED, Skaar TC (2012) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther 91(2):321–326. doi:10.1038/clpt.2011.287PubMedCentralPubMedGoogle Scholar
  138. 138.
    Kirchheiner J, Keulen J-THA, Bauer S, Roots I, Brockmöller J (2008) Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol 28(1):78–83. doi:10.1097/JCP.0b013e318160f827PubMedGoogle Scholar
  139. 139.
    Stamer UM, Stüber F, Muders T, Musshoff F (2008) Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg 107(3):926–929. doi:10.1213/ane.0b013e31817b796ePubMedGoogle Scholar
  140. 140.
    Cai Y, Yi J, Zhou C, Shen X (2012) Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury: a meta-analysis. PLoS ONE 7(10):e47769. doi:10.1371/journal.pone.0047769Google Scholar
  141. 141.
    Huang Y-S, Chern H-D, Su W-J, Wu J-C, Chang S-C, Chiang C-H, Chang F-Y, Lee S-D (2003) Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 37(4):924–930. doi:10.1053/jhep.2003.50144PubMedGoogle Scholar
  142. 142.
    Roy B, Chowdhury A, Kundu S, Santra A, Dey B, Chakraborty M, Majumder PP (2001) Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 ‘null’ mutation. J Gastroenterol Hepatol 16(9):1033–1037PubMedGoogle Scholar
  143. 143.
    Daly AK, Aithal GP, Leathart JBS, Swainsbury RA, Dang TS, Day CP (2007) Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 132(1):272–281. doi:10.1053/j.gastro.2006.11.023PubMedGoogle Scholar
  144. 144.
    Simon T, Becquemont L, Mary-Krause M, de Waziers I, Beaune P, Funck-Brentano C, Jaillon P (2000) Combined glutathione-S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin Pharmacol Ther 67(4):432–437. doi:10.1067/mcp.2000.104944PubMedGoogle Scholar
  145. 145.
    Watanabe I, Tomita A, Shimizu M, Sugawara M, Yasumo H, Koishi R, Takahashi T, Miyoshi K, Nakamura K, Izumi T, Matsushita Y, Furukawa H, Haruyama H, Koga T (2003) A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin Pharmacol Ther 73(5):435–455PubMedGoogle Scholar
  146. 146.
    Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, Coffman BL, Ratain MJ (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101(4):847–854. doi:10.1172/jci915PubMedCentralPubMedGoogle Scholar
  147. 147.
    de Leon J, Susce MT, Pan R-M, Fairchild M, Koch WH, Wedlund PJ (2005) The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 66(1):15–27PubMedGoogle Scholar
  148. 148.
    Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R (2008) SLCO1B1 variants and statin-induced myopathy-a genomewide study. N Engl J Med 359(8):789–799. doi:10.1056/NEJMoa0801936PubMedGoogle Scholar
  149. 149.
    Booth RA, Ansari MT, Loit E, Tricco AC, Weeks L, Doucette S, Skidmore B, Sears M, Sy R, Karsh J (2011) Assessment of thiopurine S-methyltransferase activity in patients prescribed thiopurines: a systematic review. Ann Intern Med 154(12):814–823. doi:10.1059/0003-4819-154-12-201106210-00009W-295-298PubMedGoogle Scholar
  150. 150.
    Musumba CO, Jorgensen A, Sutton L, Van Eker D, Zhang E, O'Hara N, Carr DF, Pritchard DM, Pirmohamed M (2013) CYP2C19*17 gain-of-function polymorphism is associated with peptic ulcer disease. Clin Pharmacol Ther 93(2):195–203. doi:10.1038/clpt.2012.215PubMedGoogle Scholar
  151. 151.
    Yen T, Nightingale BN, Burns JC, Sullivan DR, Stewart PM (2003) Butyrylcholinesterase (BCHE) genotyping for post-succinylcholine apnea in an Australian population. Clin Chem 49(8):1297–1308PubMedGoogle Scholar
  152. 152.
    Mega JL, Simon T, Collet J-P, Anderson JL, Antman EM, Bliden K, Cannon CP, Danchin N, Giusti B, Gurbel P, Horne BD, Hulot J-S, Kastrati A, Montalescot G, Neumann F-J, Shen L, Sibbing D, Steg PG, Trenk D, Wiviott SD, Sabatine MS (2010) Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 304(16):1821–1830. doi:10.1001/jama.2010.1543PubMedCentralPubMedGoogle Scholar
  153. 153.
    Amstutz U, Froehlich TK, Largiadèr CR (2011) Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 12(9):1321–1336. doi:10.2217/pgs.11.72PubMedGoogle Scholar
  154. 154.
    Dávila-Fajardo CL, Swen JJ, Cabeza Barrera J, Guchelaar H-J (2013) Genetic risk factors for drug-induced liver injury in rheumatoid arthritis patients using low-dose methotrexate. Pharmacogenomics 14(1):63–73. doi:10.2217/pgs.12.183PubMedGoogle Scholar
  155. 155.
    European Malignant Hyperthermia Group: Home. http://www.emhg.org/. Accessed 8 Feb 2013
  156. 156.
    Robinson R, Carpenter D, Shaw M-A, Halsall J, Hopkins P (2006) Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat 27(10):977–989. doi:10.1002/humu.20356PubMedGoogle Scholar
  157. 157.
    Monnier N, Procaccio V, Stieglitz P, Lunardi J (1997) Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet 60(6):1316–1325PubMedCentralPubMedGoogle Scholar
  158. 158.
    Toppin PJ, Chandy TT, Ghanekar A, Kraeva N, Beattie WS, Riazi S (2010) A report of fulminant malignant hyperthermia in a patient with a novel mutation of the CACNA1S gene. Can J Anaesth 57(7):689–693. doi:10.1007/s12630-010-9314-4PubMedGoogle Scholar
  159. 159.
    Mulder H, Cohen D, Scheffer H, Gispen-de Wied C, Arends J, Wilmink FW, Franke B, Egberts ACG (2009) HTR2C gene polymorphisms and the metabolic syndrome in patients with schizophrenia: a replication study. J Clin Psychopharmacol 29(1):16–20. doi:10.1097/JCP.0b013e3181934462PubMedGoogle Scholar
  160. 160.
    Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B, Capoluongo E (2012) Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the "old" and update of the new mutations. Blood Cells Mol Dis 48(3):154–165. doi:10.1016/j.bcmd.2012.01.001PubMedGoogle Scholar
  161. 161.
    Youngster I, Arcavi L, Schechmaster R, Akayzen Y, Popliski H, Shimonov J, Beig S, Berkovitch M (2010) Medications and glucose-6-phosphate dehydrogenase deficiency: an evidence-based review. Drug Saf 33(9):713–726. doi:10.2165/11536520-000000000-00000PubMedGoogle Scholar
  162. 162.
    Jennings BA, Kwok CS, Willis G, Matthews V, Wawruch P, Loke YK (2012) Functional polymorphisms of folate metabolism and response to chemotherapy for colorectal cancer, a systematic review and meta-analysis. Pharmacogenet Genomics 22(4):290–304. doi:10.1097/FPC.0b013e328351875dPubMedGoogle Scholar
  163. 163.
    Denborough MA, Forster JF, Lovell RR, Maplestone PA, Villiers JD (1962) Anaesthetic deaths in a family. Br J Anaesth 34:395–396PubMedGoogle Scholar
  164. 164.
    Larard DG, Rice CP, Robinson R, Spencer RW, Westhead RA (1972) Malignant hyperthermia: a study of an affected family. Br J Anaesth 44(1):93–96PubMedGoogle Scholar
  165. 165.
    Matos AR, Sambuughin N, Rumjanek FD, Amoedo ND, Cunha LBP, Zapata-Sudo G, Sudo RT (2009) Multigenerational Brazilian family with malignant hyperthermia and a novel mutation in the RYR1 gene. Braz J Med Biol Res 42(12):1218–1224PubMedGoogle Scholar
  166. 166.
    Strazis KP, Fox AW (1993) Malignant hyperthermia: a review of published cases. Anesth Analg 77(2):297–304PubMedGoogle Scholar
  167. 167.
    Hopkins PM (2011) Malignant hyperthermia: pharmacology of triggering. Br J Anaesth 107(1):48–56. doi:10.1093/bja/aer132PubMedGoogle Scholar
  168. 168.
    Dexter F, Epstein RH, Wachtel RE, Rosenberg H (2013) Estimate of the relative risk of succinylcholine for triggering malignant hyperthermia. Anesth Analg 116(1):118–122. doi:10.1213/ANE.0b013e31826f5e3bPubMedGoogle Scholar
  169. 169.
    Denborough M (1998) Malignant hyperthermia. Lancet 352(9134):1131–1136. doi:10.1016/s0140-6736(98)03078-5PubMedGoogle Scholar
  170. 170.
    Groom L, Muldoon SM, Tang ZZ, Brandom BW, Bayarsaikhan M, Bina S, Lee H-S, Qiu X, Sambuughin N, Dirksen RT (2011) Identical de novo mutation in the type 1 ryanodine receptor gene associated with fatal, stress-induced malignant hyperthermia in two unrelated families. Anesthesiology 115(5):938–945. doi:10.1097/ALN.0b013e3182320068PubMedCentralPubMedGoogle Scholar
  171. 171.
    Gronert GA, Thompson RL, Onofrio BM (1980) Human malignant hyperthermia: awake episodes and correction by dantrolene. Anesth Analg 59(5):377–378PubMedGoogle Scholar
  172. 172.
    Correia ACdC, Silva PCB, da Silva BA (2012) Malignant hyperthermia: clinical and molecular aspects. Rev Bras Anestesiol 62(6):820–837. doi:10.1016/s0034-7094(12)70182-4PubMedGoogle Scholar
  173. 173.
    Rosenberg H, Davis M, James D, Pollock N, Stowell K (2007) Malignant hyperthermia. Orphanet J Rare Dis 2:21. doi:10.1186/1750-1172-2-21Google Scholar
  174. 174.
    Sinkovich DD, Mitch-Resignalo AE (1991) Malignant hyperthermia. Orthop Nurs 10(1):39–43PubMedGoogle Scholar
  175. 175.
    Larach MG, Gronert GA, Allen GC, Brandom BW, Lehman EB (2010) Clinical presentation, treatment, and complications of malignant hyperthermia in North America from 1987-2006. Anesth Analg 110(2):498–507. doi:10.1213/ANE.0b013e3181c6b9b2PubMedGoogle Scholar
  176. 176.
    Bandschapp O, Girard T (2012) Malignant hyperthermia. Swiss Med Wkly 142:w13652. doi:10.4414/smw.2012.13652Google Scholar
  177. 177.
    Larach MG, Localio AR, Allen GC, Denborough MA, Ellis FR, Gronert GA, Kaplan RF, Muldoon SM, Nelson TE, Ording H (1994) A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology 80(4):771–779PubMedGoogle Scholar
  178. 178.
    Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2(11):a003996. doi:10.1101/cshperspect.a003996Google Scholar
  179. 179.
    Van Petegem F (2012) Ryanodine receptors: structure and function. J Biol Chem 287(38):31624–31632. doi:10.1074/jbc.R112.349068PubMedCentralPubMedGoogle Scholar
  180. 180.
    Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339(6224):439–445. doi:10.1038/339439a0PubMedGoogle Scholar
  181. 181.
    Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107(6 Pt 2):2587–2600PubMedGoogle Scholar
  182. 182.
    Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262(4):1740–1747PubMedGoogle Scholar
  183. 183.
    Meissner G, Lu X (1995) Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling. Biosci Rep 15(5):399–408PubMedGoogle Scholar
  184. 184.
    Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O'Brien PJ, MacLennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253(5018):448–451PubMedGoogle Scholar
  185. 185.
    Gillard EF, Otsu K, Fujii J, Khanna VK, de Leon S, Derdemezi J, Britt BA, Duff CL, Worton RG, MacLennan DH (1991) A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 11(3):751–755PubMedGoogle Scholar
  186. 186.
    Fill M, Stefani E, Nelson TE (1991) Abnormal human sarcoplasmic reticulum Ca2 + release channels in malignant hyperthermic skeletal muscle. Biophys J 59(5):1085–1090. doi:10.1016/s0006-3495(91)82323-2PubMedCentralPubMedGoogle Scholar
  187. 187.
    Ohta T, Endo M, Nakano T, Morohoshi Y, Wanikawa K, Ohga A (1989) Ca-induced Ca release in malignant hyperthermia-susceptible pig skeletal muscle. Am J Physiol Cell Physiol 256(2):C358–C367Google Scholar
  188. 188.
    Kim D-C (2012) Malignant hyperthermia. Korean J Anesthesiol 63(5):391–401. doi:10.4097/kjae.2012.63.5.391PubMedCentralPubMedGoogle Scholar
  189. 189.
    Klingler W, Rueffert H, Lehmann-Horn F, Girard T, Hopkins PM (2009) Core myopathies and risk of malignant hyperthermia. Anesth Analg 109(4):1167–1173. doi:10.1213/ANE.0b013e3181b5ae2dPubMedGoogle Scholar
  190. 190.
    Isaacs H, Badenhorst ME (1992) Dominantly inherited malignant hyperthermia (MH) in the King-Denborough syndrome. Muscle Nerve 15(6):740–742. doi:10.1002/mus.880150619PubMedGoogle Scholar
  191. 191.
    D’Arcy CE, Bjorksten A, Yiu EM, Bankier A, Gillies R, McLean CA, Shield LK, Ryan MM (2008) King-denborough syndrome caused by a novel mutation in the ryanodine receptor gene. Neurology 71(10):776–777. doi:10.1212/01.wnl.0000324929.33780.2fPubMedGoogle Scholar
  192. 192.
    Hirshey Dirksen SJ, Larach MG, Rosenberg H, Brandom BW, Parness J, Lang RS, Gangadharan M, Pezalski T (2011) Special article: future directions in malignant hyperthermia research and patient care. Anesth Analg 113(5):1108–1119. doi:10.1213/ANE.0b013e318222af2ePubMedCentralPubMedGoogle Scholar
  193. 193.
    Capacchione JF, Sambuughin N, Bina S, Mulligan LP, Lawson TD, Muldoon SM (2010) Exertional rhabdomyolysis and malignant hyperthermia in a patient with ryanodine receptor type 1 gene, L-type calcium channel alpha-1 subunit gene, and calsequestrin-1 gene polymorphisms. Anesthesiology 112(1):239–244. doi:10.1097/ALN.0b013e3181c29504PubMedGoogle Scholar
  194. 194.
    Wappler F, Fiege M, Steinfath M, Agarwal K, Scholz J, Singh S, Matschke J, Schulte Am Esch J (2001) Evidence for susceptibility to malignant hyperthermia in patients with exercise-induced rhabdomyolysis. Anesthesiology 94(1):95–100PubMedGoogle Scholar
  195. 195.
    (1984) A protocol for the investigation of malignant hyperpyrexia (MH) susceptibility. The European Malignant Hyperpyrexia Group. Br J Anaesth 56 (11):1267–1269Google Scholar
  196. 196.
    Urwyler A, Deufel T, McCarthy T, West S (2001) Guidelines for molecular genetic detection of susceptibility to malignant hyperthermia. Br J Anaesth 86(2):283–287PubMedGoogle Scholar
  197. 197.
    Ramachandran S, Chakraborty A, Xu L, Mei Y, Samso M, Dokholyan NV, Meissner G (2013) Structural determinants of skeletal muscle ryanodine receptor gating. J Biol Chem 288(9):6154–6165. doi:10.1074/jbc.M112.433789Google Scholar
  198. 198.
    Dewire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM, Chen X-T, Pitis PM, Gotchev D, Yuan C, Koblish M, Lark MW, Violin JD (2013) A G protein-biased ligand at the mu-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared to morphine. J Pharmacol Exp Ther 344(3):708–717. doi:10.1124/jpet.112.201616Google Scholar
  199. 199.
    Kieffer BL (1999) Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20(1):19–26PubMedGoogle Scholar
  200. 200.
    Mignat C, Wille U, Ziegler A (1995) Affinity profiles of morphine, codeine, dihydrocodeine and their glucuronides at opioid receptor subtypes. Life Sci 56(10):793–799PubMedGoogle Scholar
  201. 201.
    Eissing T, Lippert J, Willmann S (2012) Pharmacogenomics of codeine, morphine, and morphine-6-glucuronide: model-based analysis of the influence of CYP2D6 activity, UGT2B7 activity, renal impairment, and CYP3A4 inhibition. Mol Diagn Ther 16(1):43–53. doi:10.2165/11597930-000000000-00000PubMedGoogle Scholar
  202. 202.
    Lee CR, Goldstein JA, Pieper JA (2002) Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12(3):251–263PubMedGoogle Scholar
  203. 203.
    Guengerich FP (2008) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21(1):70–83. doi:10.1021/tx700079zPubMedGoogle Scholar
  204. 204.
    Sim SC, Ingelman-Sundberg M (2010) The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics 4(4):278–281. doi:10.1186/1479-7364-4-4-278PubMedCentralPubMedGoogle Scholar
  205. 205.
    Gaedigk A, Simon SD, Pearce RE, Bradford LD, Kennedy MJ, Leeder JS (2008) The CYP2D6 activity score: translating genotype information into a qualitative measure of phenotype. Clin Pharmacol Ther 83(2):234–242. doi:10.1038/sj.clpt.6100406PubMedGoogle Scholar
  206. 206.
    Eckhardt K, Li S, Ammon S, Schänzle G, Mikus G, Eichelbaum M (1998) Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 76(1–2):27–33PubMedGoogle Scholar
  207. 207.
    Sindrup SH, Brøsen K, Bjerring P, Arendt-Nielsen L, Larsen U, Angelo HR, Gram LF (1990) Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 48(6):686–693PubMedGoogle Scholar
  208. 208.
    Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JTHA, Lötsch J, Roots I, Brockmöller J (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7(4):257–265. doi:10.1038/sj.tpj.6500406PubMedGoogle Scholar
  209. 209.
    Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368 (9536):704. doi:10.1016/s0140-6736(06)69255-6Google Scholar
  210. 210.
    Kelly LE, Rieder M, van den Anker J, Malkin B, Ross C, Neely MN, Carleton B, Hayden MR, Madadi P, Koren G (2012) More codeine fatalities after tonsillectomy in North American children. Pediatrics 129(5):e1343–e1347. doi:10.1542/peds.2011-2538PubMedGoogle Scholar
  211. 211.
    Voronov P, Przybylo HJ, Jagannathan N (2007) Apnea in a child after oral codeine: a genetic variant—an ultra-rapid metabolizer. Paediatr Anaesth 17(7):684–687. doi:10.1111/j.1460-9592.2006.02182.xPubMedGoogle Scholar
  212. 212.
    Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G (2009) Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med 361(8):827–828. doi:10.1056/NEJMc0904266PubMedGoogle Scholar
  213. 213.
    Dalén P, Frengell C, Dahl ML, Sjöqvist F (1997) Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 19(5):543–544PubMedGoogle Scholar
  214. 214.
    Food and Drug Administration (2007) FDA Warning on Codeine Use by Nursing Mothers. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2007/ucm108968.htm. Accessed 26 Jan 2013
  215. 215.
    Niesters M, Overdyk F, Smith T, Aarts L, Dahan A (2013) Opioid-induced respiratory depression in paediatrics: a review of case reports. Br J Anaesth 110(2):175–182. doi:10.1093/bja/aes447PubMedGoogle Scholar
  216. 216.
    Tong TF, Ng KK (2001) Codeine ingestion and apparent life-threatening event in a neonate. Pediatr Int 43(5):517–518PubMedGoogle Scholar
  217. 217.
    Brown KA, Laferrière A, Lakheeram I, Moss IR (2006) Recurrent hypoxemia in children is associated with increased analgesic sensitivity to opiates. Anesthesiology 105(4):665–669PubMedGoogle Scholar
  218. 218.
    Stamer UM, Lehnen K, Höthker F, Bayerer B, Wolf S, Hoeft A, Stuber F (2003) Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain 105(1–2):231–238PubMedGoogle Scholar
  219. 219.
    Prommer E, Ficek B (2012) Management of pain in the elderly at the end of life. Drugs Aging 29(4):285–305. doi:10.2165/11599210-000000000-00000PubMedGoogle Scholar
  220. 220.
    Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, Anderson JL, Kimmel SE, Lee MTM, Pirmohamed M, Wadelius M, Klein TE, Altman RB (2011) Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther 90(4):625–629. doi:10.1038/clpt.2011.185PubMedCentralPubMedGoogle Scholar
  221. 221.
    Hirsh J, Fuster V, Ansell J, Halperin JL (2003) American heart association/American college of cardiology foundation guide to warfarin therapy. Circulation 107(12):1692–1711. doi:10.1161/01.cir.0000063575.17904.4ePubMedGoogle Scholar
  222. 222.
    Choonara IA, Haynes BP, Cholerton S, Breckenridge AM, Park BK (1986) Enantiomers of warfarin and vitamin K1 metabolism. Br J Clin Pharmacol 22(6):729–732PubMedCentralPubMedGoogle Scholar
  223. 223.
    Stenflo J, Fernlund P, Egan W, Roepstorff P (1974) Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A 71(7):2730–2733PubMedCentralPubMedGoogle Scholar
  224. 224.
    Wallin R, Hutson SM (2004) Warfarin and the vitamin K-dependent gamma-carboxylation system. Trends Mol Med 10(7):299–302. doi:10.1016/j.molmed.2004.05.003PubMedGoogle Scholar
  225. 225.
    Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G (2008) Pharmacology and management of the vitamin K antagonists: American college of chest physicians evidence-based clinical practice guidelines (8th Ed). Chest 133(6 Suppl):160S–198S. doi:10.1378/chest.08-0670PubMedGoogle Scholar
  226. 226.
    Baglin TP, Keeling DM, Watson HG (2006) Guidelines on oral anticoagulation (warfarin): third edition-2005 update. Br J Haematol 132(3):277–285. doi:10.1111/j.1365-2141.2005.05856.xPubMedGoogle Scholar
  227. 227.
    Lövborg H, Eriksson LR, Jönsson AK, Bradley T, Hägg S (2012) A prospective analysis of the preventability of adverse drug reactions reported in Sweden. Eur J Clin Pharmacol 68(8):1183–1189. doi:10.1007/s00228-012-1237-2PubMedGoogle Scholar
  228. 228.
    Gage BF, Lesko LJ (2008) Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J Thromb Thrombolysis 25(1):45–51. doi:10.1007/s11239-007-0104-yPubMedGoogle Scholar
  229. 229.
    Connolly SJ, Pogue J, Eikelboom J, Flaker G, Commerford P, Franzosi MG, Healey JS, Yusuf S (2008) Benefit of oral anticoagulant over antiplatelet therapy in atrial fibrillation depends on the quality of international normalized ratio control achieved by centers and countries as measured by time in therapeutic range. Circulation 118(20):2029–2037. doi:10.1161/circulationaha.107.750000PubMedGoogle Scholar
  230. 230.
    Reynolds MW, Fahrbach K, Hauch O, Wygant G, Estok R, Cella C, Nalysnyk L (2004) Warfarin anticoagulation and outcomes in patients with atrial fibrillation: a systematic review and metaanalysis. Chest 126(6):1938–1945. doi:10.1378/chest.126.6.1938PubMedGoogle Scholar
  231. 231.
    Owen RP, Gong L, Sagreiya H, Klein TE, Altman RB (2010) VKORC1 pharmacogenomics summary. Pharmacogenet Genomics 20(10):642–644. doi:10.1097/FPC.0b013e32833433b6PubMedCentralPubMedGoogle Scholar
  232. 232.
    Eriksson N, Wadelius M (2012) Prediction of warfarin dose: why, when and how? Pharmacogenomics 13(4):429–440. doi:10.2217/pgs.11.184PubMedGoogle Scholar
  233. 233.
    Avery PJ, Jorgensen A, Hamberg AK, Wadelius M, Pirmohamed M, Kamali F (2011) A proposal for an individualized pharmacogenetics-based warfarin initiation dose regimen for patients commencing anticoagulation therapy. Clin Pharmacol Ther 90(5):701–706. doi:10.1038/clpt.2011.186PubMedGoogle Scholar
  234. 234.
    Linder MW, Bon Homme M, Reynolds KK, Gage BF, Eby C, Silvestrov N, Valdes R Jr (2009) Interactive modeling for ongoing utility of pharmacogenetic diagnostic testing: application for warfarin therapy. Clin Chem 55(10):1861–1868. doi:10.1373/clinchem.2009.125898PubMedCentralPubMedGoogle Scholar
  235. 235.
    Jorgensen AL, FitzGerald RJ, Oyee J, Pirmohamed M, Williamson PR (2012) Influence of CYP2C9 and VKORC1 on patient response to warfarin: a systematic review and meta-analysis. PLoS ONE 7(8):e44064. doi:10.1371/journal.pone.0044064Google Scholar
  236. 236.
    Patel AA, Swerlick RA, McCall CO (2006) Azathioprine in dermatology: the past, the present, and the future. J Am Acad Dermatol 55(3):369–389. doi:10.1016/j.jaad.2005.07.059PubMedGoogle Scholar
  237. 237.
    Gervasini G, Vagace JM (2012) Impact of genetic polymorphisms on chemotherapy toxicity in childhood acute lymphoblastic leukemia. Front Genet 3:249. doi:10.3389/fgene.2012.00249Google Scholar
  238. 238.
    Manz M, Vavricka SR, Wanner R, Lakatos PL, Rogler G, Frei P, Safroneeva E, Schoepfer AM (2012) Therapy of steroid-resistant inflammatory bowel disease. Digestion 86(Suppl 1):11–15. doi:10.1159/000341952PubMedGoogle Scholar
  239. 239.
    Roberts RL, Barclay ML (2012) Current relevance of pharmacogenetics in immunomodulation treatment for Crohn’s disease. J Gastroenterol Hepatol 27(10):1546–1554. doi:10.1111/j.1440-1746.2012.07220.xPubMedGoogle Scholar
  240. 240.
    Ford LT, Berg JD (2010) Thiopurine S-methyltransferase (TPMT) assessment prior to starting thiopurine drug treatment; a pharmacogenomic test whose time has come. J Clin Pathol 63(4):288–295. doi:10.1136/jcp.2009.069252PubMedGoogle Scholar
  241. 241.
    Gurwitz D, Rodríguez-Antona C, Payne K, Newman W, Gisbert JP, de Mesa EG, Ibarreta D (2009) Improving pharmacovigilance in Europe: TPMT genotyping and phenotyping in the UK and Spain. Eur J Hum Genet 17(8):991–998. doi:10.1038/ejhg.2009.10PubMedCentralPubMedGoogle Scholar
  242. 242.
    Bradford K, Shih DQ (2011) Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease. World J Gastroenterol 17(37):4166–4173. doi:10.3748/wjg.v17.i37.4166PubMedCentralPubMedGoogle Scholar
  243. 243.
    Sahasranaman S, Howard D, Roy S (2008) Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64(8):753–767. doi:10.1007/s00228-008-0478-6PubMedGoogle Scholar
  244. 244.
    Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43(4):329–339PubMedGoogle Scholar
  245. 245.
    Kurowski V, Iven H (1991) Plasma concentrations and organ distribution of thiopurines after oral application of azathioprine in mice. Cancer Chemother Pharmacol 28(1):7–14PubMedGoogle Scholar
  246. 246.
    Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, Lehr HA, Wirtz S, Becker C, Atreya R, Mudter J, Hildner K, Bartsch B, Holtmann M, Blumberg R, Walczak H, Iven H, Galle PR, Ahmadian MR, Neurath MF (2003) CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest 111(8):1133–1145. doi:10.1172/jci16432PubMedCentralPubMedGoogle Scholar
  247. 247.
    Osterman MT, Kundu R, Lichtenstein GR, Lewis JD (2006) Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology 130(4):1047–1053. doi:10.1053/j.gastro.2006.01.046PubMedGoogle Scholar
  248. 248.
    Dubinsky MC (2004) Azathioprine, 6-mercaptopurine in inflammatory bowel disease: pharmacology, efficacy, and safety. Clin Gastroenterol Hepatol 2(9):731–743PubMedGoogle Scholar
  249. 249.
    Cuffari C, Hunt S, Bayless T (2001) Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut 48(5):642–646. doi:10.1136/gut.48.5.642PubMedCentralPubMedGoogle Scholar
  250. 250.
    Bökkerink JP, Stet EH, De Abreu RA, Damen FJ, Hulscher TW, Bakker MA, van Baal JA (1993) 6-Mercaptopurine: cytotoxicity and biochemical pharmacology in human malignant T-lymphoblasts. Biochem Pharmacol 45(7):1455–1463PubMedGoogle Scholar
  251. 251.
    Adam de Beaumais T, Fakhoury M, Medard Y, Azougagh S, Zhang D, Yakouben K, Jacqz-Aigrain E (2011) Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br J Clin Pharmacol 71(4):575–584. doi:10.1111/j.1365-2125.2010.03867.xPubMedCentralPubMedGoogle Scholar
  252. 252.
    Dubinsky MC, Lamothe S, Yang HY, Targan SR, Sinnett D, Théorêt Y, Seidman EG (2000) Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 118(4):705–713PubMedGoogle Scholar
  253. 253.
    Nygaard U, Toft N, Schmiegelow K (2004) Methylated metabolites of 6-mercaptopurine are associated with hepatotoxicity. Clin Pharmacol Ther 75(4):274–281. doi:10.1016/j.clpt.2003.12.001PubMedGoogle Scholar
  254. 254.
    Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, Stein CM, ­Carrillo M, Evans WE, Klein TE (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89(3):387–391. doi:10.1038/clpt.2010.320PubMedCentralPubMedGoogle Scholar
  255. 255.
    van Asseldonk DP, Seinen ML, de Boer NKH, van Bodegraven AA, Mulder CJ (2012) Hepatotoxicity associated with 6-methyl mercaptopurine formation during azathioprine and 6-mercaptopurine therapy does not occur on the short-term during 6-thioguanine therapy in IBD treatment. J Crohns Colitis 6(1):95–101. doi:10.1016/j.crohns.2011.07.009PubMedGoogle Scholar
  256. 256.
    Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM (1987) Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 41(1):18–25PubMedGoogle Scholar
  257. 257.
    Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, Pui CH, Evans WE (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91(23):2001–2008PubMedGoogle Scholar
  258. 258.
    Szumlanski CL, Honchel R, Scott MC, Weinshilboum RM (1992) Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics 2(4):148–159PubMedGoogle Scholar
  259. 259.
    Wu AH (2011) Drug metabolizing enzyme activities versus genetic variances for drug of clinical pharmacogenomic relevance. Clin Proteomics 8(1):12. doi:10.1186/1559-0275-8-12Google Scholar
  260. 260.
    McLeod HL, Lin JS, Scott EP, Pui CH, Evans WE (1994) Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharmacol Ther 55(1):15–20PubMedGoogle Scholar
  261. 261.
    Weinshilboum RM, Sladek SL (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32(5):651–662PubMedCentralPubMedGoogle Scholar
  262. 262.
    Krynetski EY, Schuetz JD, Galpin AJ, Pui CH, Relling MV, Evans WE (1995) A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci U S A 92(4):949–953PubMedCentralPubMedGoogle Scholar
  263. 263.
    Tai HL, Fessing MY, Bonten EJ, Yanishevsky Y, d’Azzo A, Krynetski EY, Evans WE (1999) Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase (TPMT) in mammalian cells: mechanism for TPMT protein deficiency inherited by TPMT*2, TPMT*3A, TPMT*3B or TPMT*3C. Pharmacogenetics 9(5):641–650PubMedGoogle Scholar
  264. 264.
    Tai HL, Krynetski EY, Schuetz EG, Yanishevski Y, Evans WE (1997) Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A 94(12):6444–6449PubMedCentralPubMedGoogle Scholar
  265. 265.
    Colombel JF, Ferrari N, Debuysere H, Marteau P, Gendre JP, Bonaz B, Soulé JC, Modigliani R, Touze Y, Catala P, Libersa C, Broly F (2000) Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology 118(6):1025–1030PubMedGoogle Scholar
  266. 266.
    Dong X-W, Zheng Q, Zhu M-M, Tong J-L, Ran Z-H (2010) Thiopurine S-methyltransferase polymorphisms and thiopurine toxicity in treatment of inflammatory bowel disease. World J Gastroenterol 16(25):3187–3195. doi:10.3748/wjg.v16.i25.3187PubMedCentralPubMedGoogle Scholar
  267. 267.
    Gisbert JP, Gomollón F (2008) Thiopurine-induced myelotoxicity in patients with inflammatory bowel disease: a review. Am J Gastroenterol 103(7):1783–1800. doi:10.1111/j.1572-0241.2008.01848.xPubMedGoogle Scholar
  268. 268.
    Higgs JE, Payne K, Roberts C, Newman WG (2010) Are patients with intermediate TPMT activity at increased risk of myelosuppression when taking thiopurine medications? Pharmacogenomics 11(2):177–188. doi:10.2217/pgs.09.155PubMedGoogle Scholar
  269. 269.
    Meggitt SJ, Anstey AV, Mohd Mustapa MF, Reynolds NJ, Wakelin S (2011) British Association of Dermatologists’ guidelines for the safe and effective prescribing of azathioprine 2011. Br J Dermatol 165(4):711–734. doi:10.1111/j.1365-2133.2011.10575.xPubMedGoogle Scholar
  270. 270.
    Chakravarty K, McDonald H, Pullar T, Taggart A, Chalmers R, Oliver S, Mooney J, Somerville M, Bosworth A, Kennedy T, British Society for Rheumatology BHPiRSG, Audit Working G, British Association of D (2008) BSR/BHPR guideline for disease-modifying anti-rheumatic drug (DMARD) therapy in consultation with the British Association of Dermatologists. Rheumatology (Oxford) 47(6):924–925. doi:10.1093/rheumatology/kel216aGoogle Scholar
  271. 271.
    Fargher EA, Tricker K, Newman W, Elliott R, Roberts SA, Shaffer JL, Bruce I, Payne K (2007) Current use of pharmacogenetic testing: a national survey of thiopurine methyltransferase testing prior to azathioprine prescription. J Clin Pharm Ther 32(2):187–195. doi:10.1111/j.1365-2710.2007.00805.xPubMedGoogle Scholar
  272. 272.
    Newman WG, Payne K, Tricker K, Roberts SA, Fargher E, Pushpakom S, Alder JE, Sidgwick GP, Payne D, Elliott RA, Heise M, Elles R, Ramsden SC, Andrews J, Houston JB, Qasim F, Shaffer J, Griffiths CEM, Ray DW, Bruce I, Ollier WER, team Tsr (2011) A pragmatic randomized controlled trial of thiopurine methyltransferase genotyping prior to azathioprine treatment: the TARGET study. Pharmacogenomics 12(6):815–826. doi:10.2217/pgs.11.32PubMedGoogle Scholar
  273. 273.
    Stocco G, Cheok MH, Crews KR, Dervieux T, French D, Pei D, Yang W, Cheng C, Pui CH, Relling MV, Evans WE (2009) Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther 85(2):164–172. doi:10.1038/clpt.2008.154PubMedCentralPubMedGoogle Scholar
  274. 274.
    Lennard L (2014) Implementation of TPMT testing. Br J Clin Pharmacol 77(4):704–714. doi:10.1111/bcp.12226PubMedCentralPubMedGoogle Scholar
  275. 275.
    Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K, Eichelbaum M, Zanger UM, Schwab M (2004) Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14(7):407–417PubMedGoogle Scholar
  276. 276.
    Hindorf U, Appell ML (2012) Genotyping should be considered the primary choice for pre-treatment evaluation of thiopurine methyltransferase function. J Crohns Colitis 6(6):655–659. doi:10.1016/j.crohns.2011.11.014PubMedGoogle Scholar
  277. 277.
    Beswick L, Friedman AB, Sparrow MP (2014) The role of thiopurine metabolite monitoring in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 8(4):383–392. doi:10.1586/17474124.2014.894878PubMedGoogle Scholar
  278. 278.
    Postmus I, Verschuren JJW, de Craen AJM, Slagboom PE, Westendorp RGJ, Jukema JW, Trompet S (2012) Pharmacogenetics of statins: achievements, whole-genome analyses and future perspectives. Pharmacogenomics 13(7):831–840. doi:10.2217/pgs.12.25PubMedGoogle Scholar
  279. 279.
    Goldstein JL, Brown MS (2009) The LDL receptor. Arterioscler Thromb Vasc Biol 29(4):431–438. doi:10.1161/atvbaha.108.179564PubMedCentralPubMedGoogle Scholar
  280. 280.
    Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. The Lancet 366(9493):1267–1278. doi:10.1016/s0140-6736(05)67394-1Google Scholar
  281. 281.
    Wilke RA, Ramsey LB, Johnson SG, Maxwell WD, McLeod HL, Voora D, Krauss RM, Roden DM, Feng Q, Cooper-Dehoff RM, Gong L, Klein TE, Wadelius M, Niemi M (2012) The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 92(1):112–117. doi:10.1038/clpt.2012.57PubMedCentralPubMedGoogle Scholar
  282. 282.
    Wei C-Y, Lee M-TM, Chen Y-T (2012) Pharmacogenomics of adverse drug reactions: implementing personalized medicine. Hum Mol Genet 21(R1):R58–65. doi:10.1093/hmg/dds341PubMedGoogle Scholar
  283. 283.
    Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell A-L, Karlsson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35(8):1333–1340. doi:10.1124/dmd.107.014902PubMedGoogle Scholar
  284. 284.
    Tirona RG, Leake BF, Merino G, Kim RB (2001) Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 276(38):35669–35675. doi:10.1074/jbc.M103792200PubMedGoogle Scholar
  285. 285.
    Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P (2012) Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions. J Med Chem 55(10):4740–4763. doi:10.1021/jm300212sPubMedCentralPubMedGoogle Scholar
  286. 286.
    Laaksonen R (2006) On the mechanisms of statin-induced myopathy. Clin Pharmacol Ther 79(6):529–531. doi:10.1016/j.clpt.2006.02.013PubMedGoogle Scholar
  287. 287.
    Brunham LR, Lansberg PJ, Zhang L, Miao F, Carter C, Hovingh GK, Visscher H, Jukema JW, Stalenhoef AF, Ross CJD, Carleton BC, Kastelein JJP, Hayden MR (2012) Differential effect of the rs4149056 variant in SLCO1B1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J 12(3):233–237. doi:10.1038/tpj.2010.92PubMedGoogle Scholar
  288. 288.
    Carr DF, O'Meara H, Jorgensen AL, Campbell J, Hobbs M, McCann G, van Staa T, Pirmohamed M (2013) SLCO1B1 genetic variant associated with statin-induced myopathy: a proof-of-concept study using the clinical practice research datalink. Clin Pharmacol Ther 94(6):695–701. doi:10.1038/clpt.2013.161PubMedCentralPubMedGoogle Scholar
  289. 289.
    MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial (2002). Lancet 360(9326):7–22. doi:10.1016/s0140-6736(02)09327-3Google Scholar
  290. 290.
    Voora D, Shah SH, Spasojevic I, Ali S, Reed CR, Salisbury BA, Ginsburg GS (2009) The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol 54(17):1609–1616. doi:10.1016/j.jacc.2009.04.053PubMedCentralPubMedGoogle Scholar
  291. 291.
    Donnelly LA, Doney ASF, Tavendale R, Lang CC, Pearson ER, Colhoun HM, McCarthy MI, Hattersley AT, Morris AD, Palmer CNA (2011) Common non-synonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a Go-DARTS study. Clin Pharmacol Ther 89(2):210–216. doi:10.1038/clpt.2010.255PubMedCentralPubMedGoogle Scholar
  292. 292.
    Puccetti L, Ciani F, Auteri A (2010) Genetic involvement in statins induced myopathy. Preliminary data from an observational case-control study. Atherosclerosis 211(1):28–29. doi:10.1016/j.atherosclerosis.2010.02.026PubMedGoogle Scholar
  293. 293.
    Niemi M (2010) Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther 87(1):130–133. doi:10.1038/clpt.2009.197PubMedGoogle Scholar
  294. 294.
    Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M (2007) Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 82(6):726–733. doi:10.1038/sj.clpt.6100220PubMedGoogle Scholar
  295. 295.
    Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M (2006) SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics 16(12):873–879. doi:10.1097/01.fpc.0000230416.82349.90PubMedGoogle Scholar
  296. 296.
    Research C for DE and Drug Safety and Availability—FDA Drug Safety Communication: new restrictions, contraindications, and dose limitations for Zocor (simvastatin) to reduce the risk of muscle injury. http://www.fda.gov/Drugs/DrugSafety/ucm256581.htm. Accessed 30 Dec 2012
  297. 297.
    Pirmohamed M (2010) Acceptance of biomarker-based tests for application in clinical practice: criteria and obstacles. Clin Pharmacol Ther 88(6):862–866. doi:10.1038/clpt.2010.245PubMedGoogle Scholar
  298. 298.
    Pirmohamed M, Aithal GP, Behr E, Daly A, Roden D (2011) The phenotype standardization project: improving pharmacogenetic studies of serious adverse drug reactions. Clin Pharmacol Ther 89(6):784–785. doi:10.1038/clpt.2011.30PubMedGoogle Scholar
  299. 299.
    Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. doi:10.1038/nature11632PubMedGoogle Scholar
  300. 300.
    Voora D, Ginsburg GS (2012) Clinical application of cardiovascular pharmacogenetics. J Am Coll Cardiol 60(1):9–20. doi:10.1016/j.jacc.2012.01.067PubMedGoogle Scholar
  301. 301.
    Payne K, Newman W, Fargher E, Tricker K, Bruce IN, Ollier WER (2007) TPMT testing in rheumatology: any better than routine monitoring? Rheumatology (Oxford) 46(5):727–729. doi:10.1093/rheumatology/kel427Google Scholar
  302. 302.
    Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, Bick D, Bottinger EP, Brilliant MH, Eng C, Frazer KA, Korf B, Ledbetter DH, Lupski JR, Marsh C, Mrazek D, Murray MF, O'Donnell PH, Rader DJ, Relling MV, Shuldiner AR, Valle D, Weinshilboum R, Green ED, Ginsburg GS (2013) Implementing genomic medicine in the clinic: the future is here. Genet Med 15(4):258–267. doi:10.1038/gim.2012.157PubMedCentralPubMedGoogle Scholar
  303. 303.
    Hudson J (2012) Pharmacogenomics: where does Britain stand? Pharmacogenomics 13(1):1–3. doi:10.2217/pgs.11.159PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.The Wolfson Centre for Personalised Medicine, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK

Personalised recommendations