Advertisement

Pharmacogenetics of Coumarin Anticoagulant Therapy

  • Rianne M.F. van Schie
  • Talitha I. Verhoef
  • Anthonius de Boer
  • Felix J.M. van der Meer
  • William K. Redekop
  • Tom Schalekamp
  • Anke-Hilse Maitland-van der ZeeEmail author
Chapter
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 9)

Abstract

Coumarins are effective drugs for treatment and prevention of thromboembolic events. However, their use requires a balancing act between the chance of underdosing which increases the risk of thromboembolic events and the chance of overdosing which increases the risk of haemorrhages. It has been shown that polymorphisms in VKORC1 and CYP2C9 explain 35–50 % of the dose variability, although patient characteristics and environmental factors also play a role. In this book chapter we discuss the pharmacogenetics of coumarin derivatives, clinical trials investigating the effectiveness of pre-treatment genotyping and the cost-effectiveness of pharmacogenetic-guided dosing.

Keywords

Adverse drug reaction Pharmacogenetics Predictive genotyping Translation Abacavir Hypersensitivity Malignant 

References

  1. 1.
    Albers GW, Sherman DG, Gress DR, Paulseth JE, Petersen P (1991) Stroke prevention in nonvalvular atrial fibrillation: a review of prospective randomized trials. Ann Neurol 30(4):511–518. doi:10.1002/ana.410300402Google Scholar
  2. 2.
    Petersen P, Boysen G, Godtfredsen J, Andersen ED, Andersen B (1989) Placebo-controlled, randomised trial of warfarin and aspirin for prevention of thromboembolic complications in chronic atrial fibrillation. The Copenhagen AFASAK study. Lancet 1(8631):175–179. doi:10.1016/S0140-6736(89)91200-2Google Scholar
  3. 3.
    The effect of low-dose warfarin on the risk of stroke in patients with nonrheumatic atrial fibrillation. The Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators (1990). N Engl J Med 323(22):1505–1511. doi:10.1056/NEJM199011293232201Google Scholar
  4. 4.
    Stroke Prevention in Atrial Fibrillation Study. Final results (1991). Circulation 84(2):527–539Google Scholar
  5. 5.
    Fareed J, Hoppensteadt DA, Fareed D, Demir M, Wahi R, Clarke M, Adiguzel C, Bick R (2008) Survival of heparins, oral anticoagulants, and aspirin after the year 2010. Semin Thromb Hemost 34(1):58–73. doi:10.1055/s-2008-1066025PubMedGoogle Scholar
  6. 6.
    Pirmohamed M (2006) Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol 62(5):509–511. doi:10.1111/j.1365-2125.2006.02806.xPubMedCentralPubMedGoogle Scholar
  7. 7.
    Pengo V, Pegoraro C, Cucchini U, Iliceto S (2006) Worldwide management of oral anticoagulant therapy: the ISAM study. J Thromb Thrombolysis 21(1):73–77. doi:10.1007/s11239-006-5580-yPubMedGoogle Scholar
  8. 8.
    Ansell J, Hollowell J, Pengo V, Martinez-Brotons F, Caro J, Drouet L (2007) Descriptive analysis of the process and quality of oral anticoagulation management in real-life practice in patients with chronic non-valvular atrial fibrillation: the international study of anticoagulation management (ISAM). J Thromb Thrombolysis 23(2):83–91. doi:10.1007/s11239-006-9022-7PubMedGoogle Scholar
  9. 9.
    Penning-van Beest FJ, van Meegen E, Rosendaal FR, Stricker BH (2001) Characteristics of anticoagulant therapy and comorbidity related to overanticoagulation. Thromb Haemost 86(2):569–574PubMedGoogle Scholar
  10. 10.
    Hylek EM, Skates SJ, Sheehan MA, Singer DE (1996) An analysis of the lowest effective intensity of prophylactic anticoagulation for patients with nonrheumatic atrial fibrillation. N Engl J Med 335(8):540–546. doi:10.1056/NEJM199608223350802PubMedGoogle Scholar
  11. 11.
    Hylek EM, Singer DE (1994) Risk factors for intracranial hemorrhage in outpatients taking warfarin. Ann Intern Med 120(11):897–902PubMedGoogle Scholar
  12. 12.
    Oden A, Fahlen M, Hart RG (2006) Optimal INR for prevention of stroke and death in atrial fibrillation: a critical appraisal. Thromb Res 117(5):493–499PubMedGoogle Scholar
  13. 13.
    Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Heuzey JY L, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Zamorano JL (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American college of cardiology/American heart association task force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation): developed in collaboration with the European heart rhythm association and the heart rhythm society. Circulation 114(7):e257–e354PubMedGoogle Scholar
  14. 14.
    Rosendaal FR (1996) The Scylla and Charybdis of oral anticoagulant treatment. N Engl J Med 335(8):587–589. doi:10.1056/NEJM199608223350810PubMedGoogle Scholar
  15. 15.
    James AH, Britt RP, Raskino CL, Thompson SG (1992) Factors affecting the maintenance dose of warfarin. J Clin Pathol 45(8):704–706PubMedCentralPubMedGoogle Scholar
  16. 16.
    van der Hooft CS, Sturkenboom MC, van Grootheest K, Kingma HJ, Stricker BH (2006) Adverse drug reaction-related hospitalisations: a nationwide study in The Netherlands. Drug Saf 29(2):161–168PubMedGoogle Scholar
  17. 17.
    Schneeweiss S, Hasford J, Gottler M, Hoffmann A, Riethling AK, Avorn J (2002) Admissions caused by adverse drug events to internal medicine and emergency departments in hospitals: a longitudinal population-based study. Eur J Clin Pharmacol 58(4):285–291. doi:10.1007/s00228-002-0467-0PubMedGoogle Scholar
  18. 18.
    Leendertse AJ, Egberts AC, Stoker LJ, van den Bemt PM (2008) Frequency of and risk factors for preventable medication-related hospital admissions in the Netherlands. Arch Intern Med 168(17):1890–1896. doi:10.1001/archinternmed.2008.3PubMedGoogle Scholar
  19. 19.
    Budnitz DS, Shehab N, Kegler SR, Richards CL (2007) Medication use leading to emergency department visits for adverse drug events in older adults. Ann Intern Med 147(11):755–765PubMedGoogle Scholar
  20. 20.
    Penning-van Beest FJ, Geleijnse JM, van Meegen E, Vermeer C, Rosendaal FR, Stricker BH (2002) Lifestyle and diet as risk factors for overanticoagulation. J Clin Epidemiol 55(4):411–417PubMedGoogle Scholar
  21. 21.
    Carlquist JF, Horne BD, Muhlestein JB, Lappe DL, Whiting BM, Kolek MJ, Clarke JL, James BC, Anderson JL (2006) Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 22(3):191–197. doi:10.1007/s11239-006-9030-7PubMedGoogle Scholar
  22. 22.
    Schalekamp T, van Geest-Daalderop JH, Kramer MH, van Holten-Verzantvoort AT, de Boer A (2007) Coumarin anticoagulants and co-trimoxazole: avoid the combination rather than manage the interaction. Eur J Clin Pharmacol 63(4):335–343. doi:10.1007/s00228-007-0268-6PubMedCentralPubMedGoogle Scholar
  23. 23.
    Schalekamp T, Klungel OH, Souverein PC, de Boer A (2008) Increased bleeding risk with concurrent use of selective serotonin reuptake inhibitors and coumarins. Arch Intern Med 168(2):180–185. doi:10.1001/archinternmed.2007.32PubMedGoogle Scholar
  24. 24.
    Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL (2004) Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost 91(1):87–94. doi:10.1267/THRO04010087PubMedGoogle Scholar
  25. 25.
    van Schie RM, Wessels JA, le Cessie S, de Boer A, Schalekamp T, van der Meer FJ, Verhoef TI, van Meegen E, Rosendaal FR, Maitland-van der Zee AH (2011) Loading and maintenance dose algorithms for phenprocoumon and acenocoumarol using patient characteristics and pharmacogenetic data. Eur Heart J 32(15):1909–1917. doi:10.1093/eurheartj/ehr116PubMedGoogle Scholar
  26. 26.
    Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, Palareti G (2008) Pharmacology and management of the vitamin K antagonists: American college of chest physicians evidence-based clinical practice guidelines (8th Ed). Chest 133(6 Suppl):160S–198S. doi:10.1378/chest.08-0670PubMedGoogle Scholar
  27. 27.
    Stafford DW (2005) The vitamin K cycle. J Thromb Haemost 3(8):1873–1878PubMedGoogle Scholar
  28. 28.
    Schalekamp T, de Boer A (2010) Pharmacogenetics of oral anticoagulant therapy. Curr Pharm Des 16(2):187–203. doi:10.2174/138161210790112737PubMedGoogle Scholar
  29. 29.
    McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE (2009) CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol 75(6):1337–1346. doi:10.1124/mol.109.054833PubMedCentralPubMedGoogle Scholar
  30. 30.
    Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EG, Muller CR, Strom TM, Oldenburg J (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427(6974):537–541. doi:10.1038/nature02214PubMedGoogle Scholar
  31. 31.
    Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427(6974):541–544. doi:10.1038/nature02254PubMedGoogle Scholar
  32. 32.
    Mann KG (2005) The challenge of regulating anticoagulant drugs: focus on warfarin. Am Heart J 149(1 Suppl):36–42Google Scholar
  33. 33.
    Kroon C, de Boer A, Hoogkamer JF, Schoemaker HC, van der Meer EJ, Edelbroek PM, Cohen AF (1990) Detection of drug interactions with single dose acenocoumarol: new screening method? Int J Clin Pharmacol Ther Toxicol 28(8):355–360PubMedGoogle Scholar
  34. 34.
    Summary of the Product Characteristics (SPC) Phenprocoumon (2011). http://db.cbg-meb.nl/IB-teksten/h03819.pdf.
  35. 35.
    Summary of the Product Characteristics (SPC) Acenocoumarol (2012). http://db.cbg-meb.nl/IB-teksten/h04464.pdf.
  36. 36.
    Ufer M (2005) Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 44(12):1227–1246PubMedGoogle Scholar
  37. 37.
    Trager WF, Lewis RJ, Garland WA (1970) Mass spectral analysis in the identification of human metabolites of warfarin. J Med Chem 13(6):1196–1204PubMedGoogle Scholar
  38. 38.
    Kaminsky LS, Dunbar DA, Wang PP, Beaune P, Larrey D, Guengerich FP, Schnellmann RG, Sipes IG (1984) Human hepatic cytochrome P-450 composition as probed by in vitro microsomal metabolism of warfarin. Drug Metab Dispos 12(4):470–477PubMedGoogle Scholar
  39. 39.
    Hermans JJ, Thijssen HH (1989) The in vitro ketone reduction of warfarin and analogues. Substrate stereoselectivity, product stereoselectivity and species differences. Biochem Pharmacol 38(19):3365–3370PubMedGoogle Scholar
  40. 40.
    Moreland TA, Hewick DS (1975) Studies on a ketone reductase in human and rat liver and kidney soluble fraction using warfarin as a substrate. Biochem Pharmacol 24(21):1953–1957PubMedGoogle Scholar
  41. 41.
    Kelly JG, O'Malley K (1979) Clinical pharmacokinetics of oral anticoagulants. Clin Pharmacokinet 4(1):1–15PubMedGoogle Scholar
  42. 42.
    Dieterle W, Faigle JW, Montigel C, Sulc M, Theobald W (1977) Biotransformation and pharmacokinetics of acenocoumarol (Sintrom) in man. Eur J Clin Pharmacol 11(5):367–375PubMedGoogle Scholar
  43. 43.
    Thijssen HH, Flinois JP, Beaune PH (2000) Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 28(11):1284–1290PubMedGoogle Scholar
  44. 44.
    Hermans JJ, Thijssen HH (1991) Comparison of the rat liver microsomal metabolism of the enantiomers of warfarin and 4’-nitrowarfarin (acenocoumarol). Xenobiotica 21(3):295–307PubMedGoogle Scholar
  45. 45.
    Toon S, Heimark LD, Trager WF, O'Reilly RA (1985) Metabolic fate of phenprocoumon in humans. J Pharm Sci 74(10):1037–1040PubMedGoogle Scholar
  46. 46.
    He M, Korzekwa KR, Jones JP, Rettie AE, Trager WF (1999) Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch Biochem Biophys 372(1):16–28. doi:10.1006/abbi.1999.1468PubMedGoogle Scholar
  47. 47.
    Jahnchen E, Meinertz T, Gilfrich HJ, Groth U, Martini A (1976) The enantiomers of phenprocoumon: pharmacodynamic and pharmacokinetic studies. Clin Pharmacol Ther 20(3):342–349PubMedGoogle Scholar
  48. 48.
    Dalen JE (2012) Prevention of embolic strokes: the role of the American college of chest physicians. Chest 141(2):294–299. doi:10.1378/chest.11-2641PubMedGoogle Scholar
  49. 49.
    ACCP-NHLBI National Conference on Antithrombotic Therapy. American College of Chest Physicians and the National Heart, Lung and Blood Institute (1986). Chest Feb;89(2 Suppl):1S–106SGoogle Scholar
  50. 50.
    Federation of Dutch anticoagulation clinics. Samenvatting medische jaarverslagen 2010. http://www.trombosestichting.nl/media/pagecontent/documents/jaarverslagen/Jaarverslag_Trombosestichting_2010.pdf
  51. 51.
    Cannegieter SC, Rosendaal FR, Wintzen AR, van der Meer FJ, Vandenbroucke JP, Briet E (1995) Optimal oral anticoagulant therapy in patients with mechanical heart valves. N Engl J Med 333(1):11–17. doi:10.1056/NEJM199507063330103PubMedGoogle Scholar
  52. 52.
    Chiquette E, Amato MG, Bussey HI (1998) Comparison of an anticoagulation clinic with usual medical care: anticoagulation control, patient outcomes, and health care costs. Arch Intern Med 158(15):1641–1647PubMedGoogle Scholar
  53. 53.
    van Walraven C, Jennings A, Oake N, Fergusson D, Forster AJ (2006) Effect of study setting on anticoagulation control: a systematic review and metaregression. Chest 129(5):1155–1166PubMedGoogle Scholar
  54. 54.
    Verhoef TI, Redekop WK, van Schie RM, Bayat S, Daly AK, Geitona M, Haschke-Becher E, Hughes DA, Kamali F, Levin LA, Manolopoulos VG, Pirmohamed M, Siebert U, Stingl JC, Wadelius M, de Boer A, Maitland-van der Zee AH (2012) Cost-effectiveness of pharmacogenetics in anticoagulation: international differences in healthcare systems and costs. Pharmacogenomics 13(12):1405–1417. doi:10.2217/pgs.12.124PubMedGoogle Scholar
  55. 55.
    Gurwitz JH, Avorn J, Ross-Degnan D, Choodnovskiy I, Ansell J (1992) Aging and the anticoagulant response to warfarin therapy. Ann Intern Med 116(11):901–904PubMedGoogle Scholar
  56. 56.
    Demirkan K, Stephens MA, Newman KP, Self TH (2000) Response to warfarin and other oral anticoagulants: effects of disease states. South Med J 93(5):448–454; quiz 455PubMedGoogle Scholar
  57. 57.
    Commissie SMedischHvandeFvanNTrombosediensten (2010) De kunst van het doseren. Richtlijn, leidraad en informatie voor het doseren van vitamine K-antagonisten. Voorschoten: Federatie van Nederlandse TrombosedienstenGoogle Scholar
  58. 58.
    Visser LE, Bleumink GS, Trienekens PH, Vulto AG, Hofman A, Stricker BH (2004) The risk of overanticoagulation in patients with heart failure on coumarin anticoagulants. Br J Haematol 127(1):85–89. doi:10.1111/j.1365-2141.2004.05162.xPubMedGoogle Scholar
  59. 59.
    Schalekamp T, Klungel OH, Souverein PC, de Boer A (2008) Effect of oral antiplatelet agents on major bleeding in users of coumarins. Thromb Haemost 100(6):1076–1083.PubMedGoogle Scholar
  60. 60.
    Verhoef TI, Zuurhout MJ, van Schie RM, Redekop WK, van der Meer FJ, le Cessie S, Schalekamp T, de Boer A, Maitland-van der Zee AH (2012) The effect of omeprazole and esomeprazole on the maintenance dose of phenprocoumon. Br J Clin Pharmacol 74(6):1068–1069. doi:10.1111/j.1365-2125.2012.04295.xPubMedCentralPubMedGoogle Scholar
  61. 61.
    Teichert M, van Noord C, Uitterlinden AG, Hofman A, Buhre PN, De Smet PA, Straus S, Stricker BH, Visser LE (2011) Proton pump inhibitors and the risk of overanticoagulation during acenocoumarol maintenance treatment. Br J Haematol 153(3):379–385. doi:10.1111/j.1365-2141.2011.08633.xPubMedGoogle Scholar
  62. 62.
    Howard PA, Ellerbeck EF, Engelman KK, Patterson KL (2002) The nature and frequency of potential warfarin drug interactions that increase the risk of bleeding in patients with atrial fibrillation. Pharmacoepidemiol Drug Saf 11(7):569–576. doi:10.1002/pds.748PubMedGoogle Scholar
  63. 63.
    Federatie van Nederlandse Trombosediensten, Wetenschappelijk Instituut Nederlandse Apothekers. http://www.fnt.nl/behandeling/cumarine-interacties.html
  64. 64.
    Wittkowsky AK. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin Vasc Med 2003(3):221–230Google Scholar
  65. 65.
    Franco V, Polanczyk CA, Clausell N, Rohde LE (2004) Role of dietary vitamin K intake in chronic oral anticoagulation: prospective evidence from observational and randomized protocols. Am J Med 116(10):651–656. doi:10.1016/j.amjmed.2003.12.036PubMedGoogle Scholar
  66. 66.
    Sconce E, Khan T, Mason J, Noble F, Wynne H, Kamali F (2005) Patients with unstable control have a poorer dietary intake of vitamin K compared to patients with stable control of anticoagulation. Thromb Haemost 93(5):872–875PubMedGoogle Scholar
  67. 67.
    Reese AM, Farnett LE, Lyons RM, Patel B, Morgan L, Bussey HI (2005) Low-dose vitamin K to augment anticoagulation control. Pharmacotherapy 25(12):1746–1751. doi:10.1592/phco.2005.25.12.1746PubMedGoogle Scholar
  68. 68.
    Rombouts EK, Rosendaal FR, Van Der Meer FJ (2007) Daily vitamin K supplementation improves anticoagulant stability. J Thromb Haemost 5(10):2043–2048PubMedGoogle Scholar
  69. 69.
    Dickerson RN (2008) Warfarin resistance and enteral tube feeding: a vitamin K-independent interaction. Nutrition 24(10):1048–1052. doi:10.1016/j.nut.2008.05.015PubMedGoogle Scholar
  70. 70.
    van der Meer FJ, Briet E, Vandenbroucke JP, Sramek DI, Versluijs MH, Rosendaal FR (1997) The role of compliance as a cause of instability in oral anticoagulant therapy. Br J Haematol 98(4):893–900PubMedGoogle Scholar
  71. 71.
    Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, Gelboin HV, Gonzalez FJ, Trager WF (1992) Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 5(1):54–59PubMedGoogle Scholar
  72. 72.
    Furuya H, Fernandez-Salguero P, Gregory W, Taber H, Steward A, Gonzalez FJ, Idle JR (1995) Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 5(6):389–392PubMedGoogle Scholar
  73. 73.
    Schalekamp T, Brasse BP, Roijers JF, van Meegen E, van der Meer FJ, van Wijk EM, Egberts AC, de Boer A (2007) VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 81(2):185–193PubMedGoogle Scholar
  74. 74.
    Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, Wallerman O, Melhus H, Wadelius C, Bentley D, Deloukas P (2005) Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 5(4):262–270PubMedGoogle Scholar
  75. 75.
    Schalekamp T, Brasse BP, Roijers JF, Chahid Y, van Geest-Daalderop JH, de Vries-Goldschmeding H, van Wijk EM, Egberts AC, de Boer A (2006) VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther 80(1):13–22PubMedGoogle Scholar
  76. 76.
    Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360(8):753–764. doi:10.1056/NEJMoa0809329PubMedGoogle Scholar
  77. 77.
    Limdi NA, McGwin G, Goldstein JA, Beasley TM, Arnett DK, Adler BK, Baird MF, Acton RT (2008) Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther 83(2):312–321PubMedCentralPubMedGoogle Scholar
  78. 78.
    Herman D, Locatelli I, Grabnar I, Peternel P, Stegnar M, Mrhar A, Breskvar K, Dolzan V (2005) Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 5(3):193–202PubMedGoogle Scholar
  79. 79.
    Xie HG, Prasad HC, Kim RB, Stein CM (2002) CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 54(10):1257–1270.PubMedGoogle Scholar
  80. 80.
    Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, Milligan PE, Grice G, Lenzini P, Rettie AE, Aquilante CL, Grosso L, Marsh S, Langaee T, Farnett LE, Voora D, Veenstra DL, Glynn RJ, Barrett A, McLeod HL (2008) Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84(3):326–331. doi:10.1038/clpt.2008.10PubMedCentralPubMedGoogle Scholar
  81. 81.
    Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen AL, Pirmohamed M, Caldwell MD, Limdi N, Burmester JK, Dowd MB, Angchaisuksiri P, Bass AR, Chen J, Eriksson N, Rane A, Lindh JD, Carlquist JF, Horne BD, Grice G, Milligan PE, Eby C, Shin J, Kim H, Kurnik D, Stein CM, McMillin G, Pendleton RC, Berg RL, Deloukas P, Gage BF (2010) Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol Ther 87(5):572–578. doi:10.1038/clpt.2010.13PubMedCentralPubMedGoogle Scholar
  82. 82.
    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333PubMedGoogle Scholar
  83. 83.
    Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, Holm L, McGinnis R, Rane A, Deloukas P (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113(4):784–792. doi:10.1182/blood-2008-04-149070PubMedCentralPubMedGoogle Scholar
  84. 84.
    Markatos CN, Grouzi E, Politou M, Gialeraki A, Merkouri E, Panagou I, Spiliotopoulou I, Travlou A (2008) VKORC1 and CYP2C9 allelic variants influence acenocoumarol dose requirements in Greek patients. Pharmacogenomics 9(11):1631–1638. doi:10.2217/14622416.9.11.1631PubMedGoogle Scholar
  85. 85.
    Geisen C, Luxembourg B, Watzka M, Toennes SW, Sittinger K, Marinova M, von Ahsen N, Lindhoff-Last E, Seifried E, Oldenburg J (2011) Prediction of phenprocoumon maintenance dose and phenprocoumon plasma concentration by genetic and non-genetic parameters. Eur J Clin Pharmacol 67(4):371–381. doi:10.1007/s00228-010-0950-yPubMedCentralPubMedGoogle Scholar
  86. 86.
    D'Andrea G, D'Ambrosio RL, Perna P D, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105(2):645–649. doi:10.1182/blood-2004-06-2111PubMedGoogle Scholar
  87. 87.
    Bodin L, Verstuyft C, Tregouet DA, Robert A, Dubert L, Funck-Brentano C, Jaillon P, Beaune P, Laurent-Puig P, Becquemont L, Loriot MA (2005) Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 106(1):135–140PubMedGoogle Scholar
  88. 88.
    Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadee W (2008) Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 112(4):1013–1021. doi:10.1182/blood-2008-03-144899PubMedCentralPubMedGoogle Scholar
  89. 89.
    Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, Chen CH, Motsinger-Reif A, Sagreiya H, Liu N, Wu AH, Gage BF, Jorgensen A, Pirmohamed M, Shin JG, Suarez-Kurtz G, Kimmel SE, Johnson JA, Klein TE, Wagner MJ (2010) Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 115(18):3827–3834. doi:10.1182/blood-2009-12-255992PubMedCentralPubMedGoogle Scholar
  90. 90.
    Ufer M, Svensson JO, Krausz KW, Gelboin HV, Rane A, Tybring G (2004) Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 60(3):173–182. doi:10.1007/s00228-004-0740-5PubMedGoogle Scholar
  91. 91.
    Teichert M, Eijgelsheim M, Uitterlinden AG, Buhre PN, Hofman A, De Smet PA, Visser LE, Stricker BH (2011) Dependency of phenprocoumon dosage on polymorphisms in the VKORC1, CYP2C9, and CYP4F2 genes. Pharmacogenet Genomics 21(1):26–34. doi:10.1097/FPC.0b013e32834154fbPubMedGoogle Scholar
  92. 92.
    Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, Hubbard J, Turpaz Y, Langaee TY, Eby C, King CR, Brower A, Schmelzer JR, Glurich I, Vidaillet HJ, Yale SH, Zhang K Q, Berg RL, Burmester JK (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111(8):4106–4112. doi:10.1182/blood-2007-11-122010PubMedCentralPubMedGoogle Scholar
  93. 93.
    Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI, Ritchie MD, Stein CM, Roden DM, Smith JD, Veenstra DL, Rettie AE, Rieder MJ (2008) A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112(4):1022–1027. doi:10.1182/blood-2008-01-134247PubMedCentralPubMedGoogle Scholar
  94. 94.
    Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, Whittaker P, Ranganath V, Kumanduri V, McLaren W, Holm L, Lindh J, Rane A, Wadelius M, Deloukas P (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5(3):e1000433. doi:10.1371/journal.pgen.1000433PubMedCentralPubMedGoogle Scholar
  95. 95.
    Pautas E, Moreau C, Gouin-Thibault I, Golmard JL, Mahe I, Legendre C, Taillandier-Heriche E, Durand-Gasselin B, Houllier AM, Verrier P, Beaune P, Loriot MA, Siguret V (2010) Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther 87(1):57–64. doi:10.1038/clpt.2009.178PubMedGoogle Scholar
  96. 96.
    Perez-Andreu V, Roldan V, Anton AI, Garcia-Barbera N, Corral J, Vicente V, Gonzalez-Conejero R (2009) Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood 113(20):4977–4979. doi:10.1182/blood-2008-09-176222PubMedGoogle Scholar
  97. 97.
    Teichert M, Eijgelsheim M, Rivadeneira F, Uitterlinden AG, van Schaik RH, Hofman A, De Smet PA, van Gelder T, Visser LE, Stricker BH (2009) A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 18(19):3758–3768. doi:10.1093/hmg/ddp309PubMedGoogle Scholar
  98. 98.
    Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, Otsuki T, Okayama A, Minematsu K, Naritomi H, Honda S, Tomoike H, Miyata T (2007) Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 120(2):181–186PubMedGoogle Scholar
  99. 99.
    Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V (2006) The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 95(5):782–787PubMedGoogle Scholar
  100. 100.
    Loebstein R, Vecsler M, Kurnik D, Austerweil N, Gak E, Halkin H, Almog S (2005) Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin Pharmacol Ther 77(5):365–372PubMedGoogle Scholar
  101. 101.
    Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS, Mohuczy D, Gaston KL, Waddell CD, Chirico MJ, Johnson JA (2006) Influence of coagulation factor, vitamin K epoxide reductase complex subunit 1, and cytochrome P450 2C9 gene polymorphisms on warfarin dose requirements. Clin Pharmacol Ther 79(4):291–302PubMedGoogle Scholar
  102. 102.
    Luxembourg B, Schneider K, Sittinger K, Toennes SW, Seifried E, Lindhoff-Last E, Oldenburg J, Geisen C (2011) Impact of pharmacokinetic (CYP2C9) and pharmacodynamic (VKORC1, F7, GGCX, CALU, EPHX1) gene variants on the initiation and maintenance phases of phenprocoumon therapy. Thromb Haemost 105(1):169–180. doi:10.1160/TH10-03-0194PubMedGoogle Scholar
  103. 103.
    Wadelius M, Chen LY, Eriksson N, Bumpstead S, Ghori J, Wadelius C, Bentley D, McGinnis R, Deloukas P (2007) Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 121(1):23–34. doi:10.1007/s00439-006-0260-8PubMedCentralPubMedGoogle Scholar
  104. 104.
    Visser LE, Trienekens PH, De Smet PA, Vulto AG, Hofman A, van Duijn CM, Stricker BH (2005) Patients with an ApoE epsilon4 allele require lower doses of coumarin anticoagulants. Pharmacogenet Genomics 15(2):69–74PubMedGoogle Scholar
  105. 105.
    Kimmel SE, Christie J, Kealey C, Chen Z, Price M, Thorn CF, Brensinger CM, Newcomb CW, Whitehead AS (2008) Apolipoprotein E genotype and warfarin dosing among Caucasians and African Americans. Pharmacogenomics J 8(1):53–60PubMedGoogle Scholar
  106. 106.
    Kohnke H, Scordo MG, Pengo V, Padrini R, Wadelius M (2005) Apolipoprotein E (APOE) and warfarin dosing in an Italian population. Eur J Clin Pharmacol 61(10):781–783. doi:10.1007/s00228-005-0982-xPubMedGoogle Scholar
  107. 107.
    Sconce EA, Daly AK, Khan TI, Wynne HA, Kamali F (2006) APOE genotype makes a small contribution to warfarin dose requirements. Pharmacogenet Genomics 16(8):609–611. doi:10.1097/01.fpc.0000220567.98089.b5PubMedGoogle Scholar
  108. 108.
    Ross KA, Bigham AW, Edwards M, Gozdzik A, Suarez-Kurtz G, Parra EJ (2010) Worldwide allele frequency distribution of four polymorphisms associated with warfarin dose requirements. J Hum Genet 55(9):582–589. doi:10.1038/jhg.2010.73PubMedGoogle Scholar
  109. 109.
    Becquemont L (2008) Evidence for a pharmacogenetic adapted dose of oral anticoagulant in routine medical practice. Eur J Clin Pharmacol 64(10):953–960. doi:10.1007/s00228-008-0542-2PubMedGoogle Scholar
  110. 110.
    Hillman MA, Wilke RA, Yale SH, Vidaillet HJ, Caldwell MD, Glurich I, Berg RL, Schmelzer J, Burmester JK (2005) A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res 3(3):137–145PubMedCentralPubMedGoogle Scholar
  111. 111.
    Caraco Y, Blotnick S, Muszkat M (2008) CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther 83(3):460–470PubMedGoogle Scholar
  112. 112.
    Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, Kahn SF, May HT, Samuelson KM, Muhlestein JB, Carlquist JF (2007) Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 116(22):2563–2570PubMedGoogle Scholar
  113. 113.
    Huang SW, Chen HS, Wang XQ, Huang L, Xu DL, Hu XJ, Huang ZH, He Y, Chen KM, Xiang DK, Zou XM, Li Q, Ma LQ, Wang HF, Chen BL, Li L, Jia YK, Xu XM (2009) Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenet Genomics 19(3):226–234. doi:10.1097/FPC.0b013e328326e0c7PubMedGoogle Scholar
  114. 114.
    Wang M, Lang X, Cui S, Fei K, Zou L, Cao J, Wang L, Zhang S, Wu X, Wang Y, Ji Q (2012) Clinical application of pharmacogenetic-based warfarin-dosing algorithm in patients of Han nationality after rheumatic valve replacement: a randomized and controlled trial. Int J Med Sci 9(6):472–479. doi:10.7150/ijms.4637PubMedCentralPubMedGoogle Scholar
  115. 115.
    Burmester JK, Berg RL, Yale SH, Rottscheit CM, Glurich IE, Schmelzer JR, Caldwell MD (2011) A randomized controlled trial of genotype-based Coumadin initiation. Genet Med 13(6):509–518. doi:10.1097/GIM.0b013e31820ad77dPubMedGoogle Scholar
  116. 116.
    Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW, Robinson M, Barton S, Brunisholz K, Mower CP, Huntinghouse JA, Rollo JS, Siler D, Bair TL, Knight S, Muhlestein JB, Carlquist JF (2012) A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation 125(16):1997–2005. doi:10.1161/CIRCULATIONAHA.111.070920PubMedGoogle Scholar
  117. 117.
    van Schie RM, Wadelius MI, Kamali F, Daly AK, Manolopoulos VG, de Boer A, Barallon R, Verhoef TI, Kirchheiner J, Haschke-Becher E, Briz M, Rosendaal FR, Redekop WK, Pirmohamed M, Maitland van der Zee AH (2009) Genotype-guided dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT) trial design. Pharmacogenomics 10(10):1687–1695. doi:10.2217/pgs.09.125PubMedGoogle Scholar
  118. 118.
    Baranova EV, Verhoef TI, Asselbergs FW, de Boer A, Maitland-van der Zee AH. Genotype-guided coumarin dosing: where are we now and where do we need to go next? Expert Opin Drug Metab Toxicol 2015(11):509–522PubMedCentralPubMedGoogle Scholar
  119. 119.
    French B, Joo J, Geller NL, Kimmel SE, Rosenberg Y, Anderson JL, Gage BF, Johnson JA, Ellenberg JH (2010) Statistical design of personalized medicine interventions: the clarification of optimal anticoagulation through genetics (COAG) trial. Trials 11:108. doi:10.1186/1745-6215-11-108PubMedCentralPubMedGoogle Scholar
  120. 120.
    Higashi MK, Veenstra DL (2003) Managed care in the genomics era: assessing the cost effectiveness of genetic tests. Am J Manag Care 9(7):493–500PubMedGoogle Scholar
  121. 121.
    You JH, Chan FW, Wong RS, Cheng G (2004) The potential clinical and economic outcomes of pharmacogenetics-oriented management of warfarin therapy - a decision analysis. Thromb Haemost 92(3):590–597. doi:10.1267/THRO04090000PubMedGoogle Scholar
  122. 122.
    Schalekamp T, Boink GJ, Visser LE, Stricker BH, de Boer A, Klungel OH (2006) CYP2C9 genotyping in acenocoumarol treatment: is it a cost-effective addition to international normalized ratio monitoring? Clin Pharmacol Ther 79(6):511–520PubMedGoogle Scholar
  123. 123.
    You JH, Tsui KK, Wong RS, Cheng G (2009) Potential clinical and economic outcomes of CYP2C9 and VKORC1 genotype-guided dosing in patients starting warfarin therapy. Clin Pharmacol Ther 86(5):540–547. doi:10.1038/clpt.2009.104PubMedGoogle Scholar
  124. 124.
    Eckman MH, Rosand J, Greenberg SM, Gage BF (2009) Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann Intern Med 150(2):73–83PubMedGoogle Scholar
  125. 125.
    Leey JA, McCabe S, Koch JA, Miles TP (2009) Cost-effectiveness of genotype-guided warfarin therapy for anticoagulation in elderly patients with atrial fibrillation. Am J Geriatr Pharmacother 7(4):197–203. doi:10.1016/j.amjopharm.2009.07.002PubMedGoogle Scholar
  126. 126.
    Patrick AR, Avorn J, Choudhry NK (2009) Cost-effectiveness of genotype-guided warfarin dosing for patients with atrial fibrillation. Circ Cardiovasc Qual Outcomes 2(5):429–436. doi:10.1161/CIRCOUTCOMES.108.808592PubMedGoogle Scholar
  127. 127.
    Meckley LM, Gudgeon JM, Anderson JL, Williams MS, Veenstra DL (2010) A policy model to evaluate the benefits, risks and costs of warfarin pharmacogenomic testing. Pharmacoeconomics 28(1):61–74. doi:10.2165/11318240-000000000-00000PubMedGoogle Scholar
  128. 128.
    Shiroiwa T, Sung YK, Fukuda T, Lang HC, Bae SC, Tsutani K (2010) International survey on willingness-to-pay (WTP) for one additional QALY gained: what is the threshold of cost effectiveness? Health Econ 19(4):422–437. doi:10.1002/hec.1481PubMedGoogle Scholar
  129. 129.
    Verhoef TI, Redekop WK, Veenstra DL, Thariani R, Beltman PA, van Schie RM, de Boer A, Maitland-van der Zee AH (2013) Cost-effectiveness of pharmacogenetic-guided dosing of phenprocoumon in atrial fibrillation. Pharmacogenomics 14(8):869–883. doi:10.2217/pgs.13.74PubMedGoogle Scholar
  130. 130.
    Dogliotti A, Paolasso E, Giugliano RP (2013) Novel oral anticoagulants in atrial fibrillation: a meta-analysis of large, randomized, controlled trials vs warfarin. Clin Cardiol 36(2):61–67. doi:10.1002/clc.22081PubMedGoogle Scholar
  131. 131.
    You JH, Tsui KK, Wong RS, Cheng G (2012) Cost-effectiveness of dabigatran versus genotype-guided management of warfarin therapy for stroke prevention in patients with atrial fibrillation. PLoS ONE 7(6):e39640. doi:10.1371/journal.pone.0039640PubMedCentralPubMedGoogle Scholar
  132. 132.
    Verhoef TI, Redekop WK, Darba J, Geitona M, Hughes DA, Siebert U, de Boer A, Maitland-van der Zee AH, Barallon R, Briz M, Daly A, Haschke-Becher E, Kamali F, Kirchheiner J, Manolopoulos VG, Pirmohamed M, Rosendaal FR, van Schie RM, Wadelius M (2010) A systematic review of cost-effectiveness analyses of pharmacogenetic-guided dosing in treatment with coumarin derivatives. Pharmacogenomics 11(7):989–1002. doi:10.2217/pgs.10.74PubMedGoogle Scholar
  133. 133.
    Howard R, Leathart JB, French DJ, Krishan E, Kohnke H, Wadelius M, van Schie R, Verhoef T, Maitland-van der Zee AH, Daly AK, Barallon R (2011) Genotyping for CYP2C9 and VKORC1 alleles by a novel point of care assay with HyBeacon(R) probes. Clin Chim Acta 412(23–24):2063–2069. doi:10.1016/j.cca.2011.07.013PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rianne M.F. van Schie
    • 1
  • Talitha I. Verhoef
    • 1
  • Anthonius de Boer
    • 1
  • Felix J.M. van der Meer
    • 2
  • William K. Redekop
    • 3
  • Tom Schalekamp
    • 1
  • Anke-Hilse Maitland-van der Zee
    • 1
    Email author
  1. 1.Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Department of Thrombosis and HemostasisLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Institute for Medical Technology AssessmentErasmus UniversityRotterdamThe Netherlands

Personalised recommendations