Advertisement

Pharmacogenetics and Antineoplastic Therapies

  • Jai N. Patel
  • Christine M. Walko
  • Federico InnocentiEmail author
Chapter
Part of the Advances in Predictive, Preventive and Personalised Medicine book series (APPPM, volume 9)

Abstract

The genome of cancer cells differs from that of the host cell from which it arises. These changes in molecular pathways drive cellular proliferation and ultimately tumour growth and progression. As a result, there has been a shift from categorising tumours solely based on their tissue of origin and histology to consideration of their molecular profiles. This transformation has led to the current breadth of treatments available, including largely targeted therapies. When individualising cancer therapy, it is essential to evaluate the expected individual drug exposure, risk for toxicity, and expected drug efficacy; however, a large heterogeneity in response to antineoplastic therapies exists across the human population. Dose-limiting toxicities often lead to dose reductions and delays in therapy, even in a potentially curative setting. It is therefore imperative that clinicians be able to identify the patients most likely to benefit from treatment and those at an increased risk of toxicity. This chapter will focus on the pharmacogenetic associations of antineoplastic therapies, and the prospective identification of clinically validated and/or utilised germ-line and somatic biomarkers, maximising clinical efficacy and minimising toxicity.

Keywords

Pharmacogenetics Germ-line Somatic Predictive Biomarker Antineoplastics Cancer 

Notes

Acknowledgements

Jessie Bishop for her assistance in editing the final chapter.

References

  1. 1.
    Crona D, Innocenti F (2012) Can knowledge of germline markers of toxicity optimize dosing and efficacy of cancer therapy? Biomark Med 6(3):349–362. doi:10.2217/bmm.12.19PubMedCentralPubMedGoogle Scholar
  2. 2.
    Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286 (5439):487–491PubMedGoogle Scholar
  3. 3.
    Soh TI, Yong WP, Innocenti F (2011) Recent progress and clinical importance on pharmacogenetics in cancer therapy. Clin Chem Lab Med 49(10):1621–1632. doi:10.1515/CCLM.2011.715Google Scholar
  4. 4.
    Innocenti F, Cox NJ, Dolan ME (2011) The use of genomic information to optimize cancer chemotherapy. Semin Oncol 38(2):186–195. doi:10.1053/j.seminoncol.2011.01.005PubMedCentralPubMedGoogle Scholar
  5. 5.
    Green ED, Guyer MS, National Human Genome Research I (2011) Charting a course for genomic medicine from base pairs to bedside. Nature 470(7333):204–213. doi:10.1038/nature09764PubMedGoogle Scholar
  6. 6.
    Deenen MJ, Cats A, Beijnen JH, Schellens JH (2011) Part 1: background, methodology, and clinical adoption of pharmacogenetics. Oncologist 16(6):811–819. doi:10.1634/theoncologist.2010-0258PubMedCentralPubMedGoogle Scholar
  7. 7.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892. doi:10.1056/NEJMoa1113205PubMedGoogle Scholar
  8. 8.
    Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68(9):3077–3080; discussion 3080. doi:10.1158/0008-5472.CAN-07-3293PubMedGoogle Scholar
  9. 9.
    Oldenhuis CN, Oosting SF, Gietema JA, de Vries EG (2008) Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer 44(7):946–953. doi:10.1016/j.ejca.2008.03.006PubMedGoogle Scholar
  10. 10.
    van ’t Veer LJ Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi:10.1038/415530aPubMedGoogle Scholar
  11. 11.
    Benatti P, Gafa R, Barana D, Marino M, Scarselli A, Pedroni M, Maestri I, Guerzoni L, Roncucci L, Menigatti M, Roncari B, Maffei S, Rossi G, Ponti G, Santini A, Losi L, Di Gregorio C, Oliani C, Ponz de Leon M, Lanza G (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11(23):8332–8340. doi:10.1158/1078-0432.CCR-05-1030PubMedGoogle Scholar
  12. 12.
    Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23(3):609–618. doi:10.1200/JCO.2005.01.086PubMedGoogle Scholar
  13. 13.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA, Group B-S (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516. doi:10.1056/NEJMoa1103782PubMedCentralPubMedGoogle Scholar
  14. 14.
    Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S, Shchepotin I, Maurel J, Cunningham D, Tejpar S, Schlichting M, Zubel A, Celik I, Rougier P, Ciardiello F (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29(15):2011–2019. doi:10.1200/JCO.2010.33.5091PubMedGoogle Scholar
  15. 15.
    Mandrekar SJ, Sargent DJ (2009) Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J Clin Oncol 27(24):4027–4034. doi:10.1200/JCO.2009.22.3701PubMedCentralPubMedGoogle Scholar
  16. 16.
    McLeod HL, Krynetski EY, Relling MV, Evans WE (2000) Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14(4):567–572PubMedGoogle Scholar
  17. 17.
    Stanulla M, Schaeffeler E, Flohr T, Cario G, Schrauder A, Zimmermann M, Welte K, Ludwig WD, Bartram CR, Zanger UM, Eichelbaum M, Schrappe M, Schwab M (2005) Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 293(12):1485–1489. doi:10.1001/jama.293.12.1485PubMedGoogle Scholar
  18. 18.
    Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC, Krynetski EY, Pui CH, Evans WE (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Nat Cancer Inst 91(23):2001–2008PubMedGoogle Scholar
  19. 19.
    Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, Stein CM, Carrillo M, Evans WE, Klein TE, Clinical Pharmacogenetics Implementation C (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharm Ther 89(3):387–391. doi:10.1038/clpt.2010.320Google Scholar
  20. 20.
    Administration UFaD (2010) Table of Pharmacogenomic Biomarkers in Drug LabelsGoogle Scholar
  21. 21.
    Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7(8):2182–2194PubMedGoogle Scholar
  22. 22.
    Perera MA, Innocenti F, Ratain MJ (2008) Pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 polymorphisms: are we there yet? Pharmacotherapy 28(6):755–768. doi:10.1592/phco.28.6.755PubMedGoogle Scholar
  23. 23.
    Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M, Karrison T, Janisch L, Ramirez J, Rudin CM, Vokes EE, Ratain MJ (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22(8):1382–1388. doi:10.1200/JCO.2004.07.173PubMedGoogle Scholar
  24. 24.
    Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL (2007) UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Nat Cancer Inst 99(17):1290–1295. doi:10.1093/jnci/djm115PubMedGoogle Scholar
  25. 25.
    Relling MV, Klein TE (2011) CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin Pharm Ther 89(3):464–467. doi:10.1038/clpt.2010.279Google Scholar
  26. 26.
    Toffoli G, Cecchin E, Gasparini G, D’Andrea M, Azzarello G, Basso U, Mini E, Pessa S, De Mattia E, Lo Re G, Buonadonna A, Nobili S, De Paoli P, Innocenti F (2010) Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J Clin Oncol28(5):866–871. doi:10.1200/JCO.2009.23.6125PubMedGoogle Scholar
  27. 27.
    Marcuello E, Paez D, Pare L, Salazar J, Sebio A, del Rio E, Baiget M (2011) A genotype-directed phase I-IV dose-finding study of irinotecan in combination with fluorouracil/leucovorin as first-line treatment in advanced colorectal cancer. Br J Cancer 105(1):53–57. doi:10.1038/bjc.2011.206PubMedCentralPubMedGoogle Scholar
  28. 28.
    Irvin WJ Jr, Walko CM, Weck KE, Ibrahim JG, Chiu WK, Dees EC, Moore SG, Olajide OA, Graham ML, Canale ST, Raab RE, Corso SW, Peppercorn JM, Anderson SM, Friedman KJ, Ogburn ET, Desta Z, Flockhart DA, McLeod HL, Evans JP, Carey LA (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29(24):3232–3239. doi:10.1200/JCO.2010.31.4427PubMedCentralPubMedGoogle Scholar
  29. 29.
    Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3(2):229–243. doi:10.1517/14622416.3.2.229PubMedGoogle Scholar
  30. 30.
    Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, Skaar T, Storniolo AM, Li L, Araba A, Blanchard R, Nguyen A, Ullmer L, Hayden J, Lemler S, Weinshilboum RM, Rae JM, Hayes DF, Flockhart DA (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Nat Cancer Inst 97(1):30–39. doi:10.1093/jnci/dji005PubMedGoogle Scholar
  31. 31.
    Goetz MP, Knox SK, Suman VJ, Rae JM, Safgren SL, Ames MM, Visscher DW, Reynolds C, Couch FJ, Lingle WL, Weinshilboum RM, Fritcher EG, Nibbe AM, Desta Z, Nguyen A, Flockhart DA, Perez EA, Ingle JN (2007) The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 101(1):113–121. doi:10.1007/s10549-006-9428-0PubMedGoogle Scholar
  32. 32.
    Schroth W, Goetz MP, Hamann U, Fasching PA, Schmidt M, Winter S, Fritz P, Simon W, Suman VJ, Ames MM, Safgren SL, Kuffel MJ, Ulmer HU, Bolander J, Strick R, Beckmann MW, Koelbl H, Weinshilboum RM, Ingle JN, Eichelbaum M, Schwab M, Brauch H (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302(13):1429–1436. doi:10.1001/jama.2009.1420PubMedCentralPubMedGoogle Scholar
  33. 33.
    Regan MM, Leyland-Jones B, Bouzyk M, Pagani O, Tang W, Kammler R, Dell’orto P, Biasi MO, Thurlimann B, Lyng MB, Ditzel HJ, Neven P, Debled M, Maibach R, Price KN, Gelber RD, Coates AS, Goldhirsch A, Rae JM, Viale G, Breast International Group 1-98 Collaborative G (2012) CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1-98 trial. J Nat Cancer Inst 104(6):441–451. doi:10.1093/jnci/djs125PubMedCentralPubMedGoogle Scholar
  34. 34.
    Rae JM, Drury S, Hayes DF, Stearns V, Thibert JN, Haynes BP, Salter J, Sestak I, Cuzick J, Dowsett M, trialists A (2012) CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Nat Cancer Inst 104(6):452–460. doi:10.1093/jnci/djs126PubMedCentralPubMedGoogle Scholar
  35. 35.
    Nakamura Y, Ratain MJ, Cox NJ, McLeod HL, Kroetz DL, Flockhart DA (2012) Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1–98 trial. J Nat Cancer Inst 104(16):1264; author reply 1266–1268. doi:10.1093/jnci/djs304PubMedGoogle Scholar
  36. 36.
    Brauch H, Schroth W, Goetz MP, Murdter TE, Winter S, Ingle JN, Schwab M, Eichelbaum M (2013) Tamoxifen use in postmenopausal breast cancer: CYP2D6 matters. J Clin Oncol 31(2):176–180. doi:10.1200/JCO.2012.44.6625PubMedCentralPubMedGoogle Scholar
  37. 37.
    Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, Rongen GA, van Schaik RH, Schalekamp T, Touw DJ, van der Weide J, Wilffert B, Deneer VH, Guchelaar HJ (2011) Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharm Ther 89(5):662–673. doi:10.1038/clpt.2011.34Google Scholar
  38. 38.
    Kiyotani K, Mushiroda T, Imamura CK, Tanigawara Y, Hosono N, Kubo M, Sasa M, Nakamura Y, Zembutsu H (2012) Dose-adjustment study of tamoxifen based on CYP2D6 genotypes in Japanese breast cancer patients. Breast Cancer Res Treat 131(1):137–145. doi:10.1007/s10549-011-1777-7PubMedGoogle Scholar
  39. 39.
    Diasio RB, Johnson MR (1999) Dihydropyrimidine dehydrogenase: its role in 5-fluorouracil clinical toxicity and tumor resistance. Clin Cancer Res 5(10):2672–2673PubMedGoogle Scholar
  40. 40.
    Toffoli G, Cecchin E (2007) Pharmacogenetics and stomach cancer: an update. Pharmacogenomics 8(5):497–505. doi:10.2217/14622416.8.5.497PubMedGoogle Scholar
  41. 41.
    Van Kuilenburg AB Meinsma R Zoetekouw L Van Gennip AH (2002) High prevalence of the IVS14 + 1G>A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenetics 12(7):555–558PubMedGoogle Scholar
  42. 42.
    Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J, Kerb R, Blievernicht J, Fischer J, Hofmann U, Bokemeyer C, Eichelbaum M, German FUTSG (2008) Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol 26(13):2131–2138. doi:10.1200/JCO.2006.10.4182PubMedGoogle Scholar
  43. 43.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Janne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW, Iafrate AJ (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703. doi:10.1056/NEJMoa1006448PubMedCentralPubMedGoogle Scholar
  44. 44.
    Shaw AT, Engelman JA (2013) ALK in lung cancer: past, present, and future. J Clin Oncol 31(8):1105–1111. doi:10.1200/JCO.2012.44.5353PubMedCentralPubMedGoogle Scholar
  45. 45.
    Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 4(120):120ra17. doi:10.1126/scitranslmed.3003316Google Scholar
  46. 46.
    Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Nat Cancer Inst 25:85–109PubMedGoogle Scholar
  47. 47.
    de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300(5894):765–767PubMedGoogle Scholar
  48. 48.
    Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA, Investigators I (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417. doi:10.1056/NEJMoa062867PubMedGoogle Scholar
  49. 49.
    Zhang WW, Cortes JE, Yao H, Zhang L, Reddy NG, Jabbour E, Kantarjian HM, Jones D (2009) Predictors of primary imatinib resistance in chronic myelogenous leukemia are distinct from those in secondary imatinib resistance. J Clin Oncol 27(22):3642–3649. doi:10.1200/JCO.2008.19.4076PubMedCentralPubMedGoogle Scholar
  50. 50.
    Lierman E, Smits S, Cools J, Dewaele B, Debiec-Rychter M, Vandenberghe P (2012) Ponatinib is active against imatinib-resistant mutants of FIP1L1-PDGFRA and KIT, and against FGFR1-derived fusion kinases. Leukemia 26(7):1693–1695. doi:10.1038/leu.2012.8PubMedGoogle Scholar
  51. 51.
    La Thangue NB Kerr DJ (2011) Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol 8(10):587–596. doi:10.1038/nrclinonc.2011.121PubMedGoogle Scholar
  52. 52.
    Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111(5):2505–2515. doi:10.1182/blood-2007-07-102798PubMedGoogle Scholar
  53. 53.
    Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Ogden A, Shepherd L, Willman C, Bloomfield CD, Rowe JM, Wiernik PH (1997) All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med 337(15):1021–1028. doi:10.1056/NEJM199710093371501PubMedGoogle Scholar
  54. 54.
    Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monczak Y, Pearson M, Pelicci PG, Miller WH Jr (1996) The PML/RAR alpha oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood 88(8):2826–2832PubMedGoogle Scholar
  55. 55.
    Ohnishi K (2007) PML-RARalpha inhibitors (ATRA, tamibaroten, arsenic troxide) for acute promyelocytic leukemia. Int J Clin Oncol 12(5):313–317. doi:10.1007/s10147-007-0694-6PubMedGoogle Scholar
  56. 56.
    Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA, 3rd, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J (2012) Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N Engl J Med 367(18):1694-1703. doi:10.1056/NEJMoa1210093Google Scholar
  57. 57.
    Fletcher CDM, Berman JJ, Corless C, Gorstein F, Lasota J, Longley BJ, Miettinen M, O’Leary TJ, Remotti H, Rubin BP, Shmookler B, Sobin LH, Weiss SW (2002) Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 33(5):459–465. doi:10.1053/hupa.2002.123545PubMedGoogle Scholar
  58. 58.
    Yasuda A, Sawai H, Takahashi H, Ochi N, Matsuo Y, Funahashi H, Sato M, Okada Y, Takeyama H, Manabe T (2007) Stem cell factor/c-kit receptor signaling enhances the proliferation and invasion of colorectal cancer cells through the PI3K/Akt pathway. Dig Dis Sci 52(9):2292–2300. doi:10.1007/s10620-007-9759-7PubMedGoogle Scholar
  59. 59.
    Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Druker BJ, Kiese B, Eisenberg B, Roberts PJ, Singer S, Fletcher CD, Silberman S, Dimitrijevic S, Fletcher JA (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21(23):4342–4349. doi:10.1200/JCO.2003.04.190PubMedGoogle Scholar
  60. 60.
    Taniguchi M, Nishida T, Hirota S, Isozaki K, Ito T, Nomura T, Matsuda H, Kitamura Y (1999) Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res 59(17):4297–4300PubMedGoogle Scholar
  61. 61.
    McLean SR, Gana-Weisz M, Hartzoulakis B, Frow R, Whelan J, Selwood D, Boshoff C (2005) Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Mol Cancer Ther 4(12):2008–2015. doi:10.1158/1535-7163.MCT-05-0070PubMedGoogle Scholar
  62. 62.
    Yarden Y, Shilo BZ (2007) SnapShot: EGFR signaling pathway. Cell 131(5):1018. doi:10.1016/j.cell.2007.11.013PubMedGoogle Scholar
  63. 63.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van Kooten M, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabarbara P, Seymour L, National Cancer Institute of Canada Clinical Trials G (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353(2):123–132. doi:10.1056/NEJMoa050753PubMedGoogle Scholar
  64. 64.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. doi:10.1056/NEJMoa040938PubMedGoogle Scholar
  65. 65.
    Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, Zhang S, Wang J, Zhou S, Ren S, Lu S, Zhang L, Hu C, Hu C, Luo Y, Chen L, Ye M, Huang J, Zhi X, Zhang Y, Xiu Q, Ma J, Zhang L, You C (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12(8):735–742. doi:10.1016/S1470-2045(11)70184-XPubMedGoogle Scholar
  66. 66.
    Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, Zhou C, Su WC, Wang M, Sun Y, Heo DS, Crino L, Tan EH, Chao TY, Shahidi M, Cong XJ, Lorence RM, Yang JC (2012) Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol 13(5):528–538. doi:10.1016/S1470-2045(12)70087-6PubMedGoogle Scholar
  67. 67.
    Mamounas EP, Tang G, Fisher B, Paik S, Shak S, Costantino JP, Watson D, Geyer CE Jr, Wickerham DL, Wolmark N (2010) Association between the 21-gene recurrence score assay and risk of locoregional recurrence in node-negative, estrogen receptor-positive breast cancer: results from NSABP B-14 and NSABP B-20. J Clin Oncol 28(10):1677–1683. doi:10.1200/JCO.2009.23.7610PubMedCentralPubMedGoogle Scholar
  68. 68.
    Allegra JC, Lippman ME, Thompson EB, Simon R, Barlock A, Green L, Huff KK, Do HM, Aitken SC (1979) Distribution, frequency, and quantitative analysis of estrogen, progesterone, androgen, and glucocorticoid receptors in human breast cancer. Cancer Res 39(5):1447–1454PubMedGoogle Scholar
  69. 69.
    Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J, Buyse M, Baum M, Buzdar A, Colleoni M, Coombes C, Snowdon C, Gnant M, Jakesz R, Kaufmann M, Boccardo F, Godwin J, Davies C, Peto R (2010) Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28(3):509–518. doi:10.1200/JCO.2009.23.1274PubMedGoogle Scholar
  70. 70.
    Freedman OC, Verma S, Clemons MJ (2006) Pre-menopausal breast cancer and aromatase inhibitors: treating a new generation of women. Breast Cancer Res Treat 99(3):241–247. doi:10.1007/s10549-006-9208-xPubMedGoogle Scholar
  71. 71.
    Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, Abraham M, Alencar VH, Badran A, Bonfill X, Bradbury J, Clarke M, Collins R, Davis SR, Delmestri A, Forbes JF, Haddad P, Hou MF, Inbar M, Khaled H, Kielanowska J, Kwan WH, Mathew BS, Muller B, Nicolucci A, Peralta O, Pernas F, Petruzelka L, Pienkowski T, Rajan B, Rubach MT, Tort S, Urrutia G, Valentini M, Wang Y, Peto R, for the Adjuvant Tamoxifen: Longer Against Shorter Collaborative G (2012) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381(9869):805–816. doi:10.1016/S0140-6736(12)61963-1Google Scholar
  72. 72.
    Owens MA, Horten BC, Da Silva MM (2004) HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 5(1):63–69PubMedGoogle Scholar
  73. 73.
    Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, Gaudet M, Schmidt MK, Broeks A, Cox A, Fasching PA, Hein R, Spurdle AB, Blows F, Driver K, Flesch-Janys D, Heinz J, Sinn P, Vrieling A, Heikkinen T, Aittomaki K, Heikkila P, Blomqvist C, Lissowska J, Peplonska B, Chanock S, Figueroa J, Brinton L, Hall P, Czene K, Humphreys K, Darabi H, Liu J, Van ’t Veer LJ, van Leeuwen FE, Andrulis IL, Glendon G, Knight JA, Mulligan AM, O’Malley FP, Weerasooriya N, John EM, Beckmann MW, Hartmann A, Weihbrecht SB, Wachter DL, Jud SM, Loehberg CR, Baglietto L, English DR, Giles GG, McLean CA, Severi G, Lambrechts D, Vandorpe T, Weltens C, Paridaens R, Smeets A, Neven P, Wildiers H, Wang X, Olson JE, Cafourek V, Fredericksen Z, Kosel M, Vachon C, Cramp HE, Connley D, Cross SS, Balasubramanian SP, Reed MW, Dork T, Bremer M, Meyer A, Karstens JH, Ay A, Park-Simon TW, Hillemanns P, Arias Perez JI, Menendez Rodriguez P, Zamora P, Benitez J, Ko YD, Fischer HP, Hamann U, Pesch B, Bruning T, Justenhoven C, Brauch H, Eccles DM, Tapper WJ, Gerty SM, Sawyer EJ, Tomlinson IP, Jones A, Kerin M, Miller N, McInerney N, Anton-Culver H, Ziogas A, Shen CY, Hsiung CN, Wu PE, Yang SL, Yu JC, Chen ST, Hsu GC, Haiman CA, Henderson BE, Le Marchand L, Kolonel LN, Lindblom A, Margolin S, Jakubowska A, Lubinski J, Huzarski T, Byrski T, Gorski B, Gronwald J, Hooning MJ, Hollestelle A, van den Ouweland AM, Jager A, Kriege M, Tilanus-Linthorst MM, Collee M, Wang-Gohrke S, Pylkas K, Jukkola-Vuorinen A, Mononen K, Grip M, Hirvikoski P, Winqvist R, Mannermaa A, Kosma VM, Kauppinen J, Kataja V, Auvinen P, Soini Y, Sironen R, Bojesen SE, Orsted DD, Kaur-Knudsen D, Flyger H, Nordestgaard BG, Holland H, Chenevix-Trench G, Manoukian S, Barile M, Radice P, Hankinson SE, Hunter DJ, Tamimi R, Sangrajrang S, Brennan P, McKay J, Odefrey F, Gaborieau V, Devilee P, Huijts PE, Tollenaar RA, Seynaeve C, Dite GS, Apicella C, Hopper JL, Hammet F, Tsimiklis H, Smith LD, Southey MC, Humphreys MK, Easton D, Pharoah P, Sherman ME, Garcia-Closas M (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Nat Cancer Inst 103(3):250–263. doi:10.1093/jnci/djq526PubMedCentralPubMedGoogle Scholar
  74. 74.
    Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, Hung G, Robinson RA, Harris C, El-Naggar A, Slamon DJ, Phillips RN, Ross JS, Wolman SR, Flom KJ (1997) HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol 15(8):2894–2904PubMedGoogle Scholar
  75. 75.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, Gelber RD, Herceptin Adjuvant Trial Study T (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353(16):1659–1672. doi:10.1056/NEJMoa052306PubMedGoogle Scholar
  76. 76.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J, Breast Cancer International Research G (2011) Adjuvant trastuzumab in HER2-positive breast cancer. T N Engl J Med 365(14):1273–1283. doi:10.1056/NEJMoa0910383Google Scholar
  77. 77.
    Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. T N Engl J Med 355(26):2733–2743. doi:10.1056/NEJMoa064320Google Scholar
  78. 78.
    Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, Pedrini JL, Pienkowski T, Knott A, Clark E, Benyunes MC, Ross G, Swain SM, Group CS (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366(2):109–119. doi:10.1056/NEJMoa1113216PubMedGoogle Scholar
  79. 79.
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Dieras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K, Group ES (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367(19):1783–1791. doi:10.1056/NEJMoa1209124PubMedGoogle Scholar
  80. 80.
    Ono M, Kuwano M (2006) Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res 12(24):7242–7251. doi:10.1158/1078-0432.CCR-06-0646PubMedGoogle Scholar
  81. 81.
    Heinemann V, Stintzing S, Kirchner T, Boeck S, Jung A (2009) Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev 35(3):262–271. doi:10.1016/j.ctrv.2008.11.005PubMedGoogle Scholar
  82. 82.
    Siddiqui AD, Piperdi B (2010) KRAS mutation in colon cancer: a marker of resistance to EGFR-I therapy. Ann Surg Oncol 17(4):1168–1176. doi:10.1245/s10434-009-0811-zPubMedCentralPubMedGoogle Scholar
  83. 83.
    Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, Rivera F, Kocakova I, Ruff P, Blasinska-Morawiec M, Smakal M, Canon JL, Rother M, Oliner KS, Wolf M, Gansert J (2010) Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28(31):4697–4705. doi:10.1200/JCO.2009.27.4860PubMedGoogle Scholar
  84. 84.
    Martin P, Leighl NB, Tsao MS, Shepherd FA (2013) KRAS mutations as prognostic and predictive markers in non-small cell lung cancer. J Thorac Oncol 8(5):530–542. doi:10.1097/JTO.0b013e318283d958PubMedGoogle Scholar
  85. 85.
    Rosell R, Monzo M, Molina F, Martinez E, Pifarre A, Moreno I, Mate JL, de Anta JM, Sanchez M, Font A (1995) K-ras genotypes and prognosis in non-small-cell lung cancer. Ann Oncol 6(Suppl 3):S15–20PubMedGoogle Scholar
  86. 86.
    Linardou H, Dahabreh IJ, Bafaloukos D, Kosmidis P, Murray S (2009) Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat Rev Clin Oncol 6(6):352–366. doi:10.1038/nrclinonc.2009.62PubMedGoogle Scholar
  87. 87.
    Massarelli E, Varella-Garcia M, Tang X, Xavier AC, Ozburn NC, Liu DD, Bekele BN, Herbst RS, Wistuba, II (2007) KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clinical Cancer Res 13(10):2890–2896. doi:10.1158/1078-0432.CCR-06-3043Google Scholar
  88. 88.
    Emens LA (2010) Chemoimmunotherapy. Cancer J 16(4):295–303. doi:10.1097/PPO.0b013e3181eb5066PubMedCentralPubMedGoogle Scholar
  89. 89.
    Delgado J, Baumann T, Ghita G, Montserrat E (2012) Chronic lymphocytic leukemia therapy: beyond chemoimmunotherapy. Curr Pharm Des 18(23):3356–3362PubMedGoogle Scholar
  90. 90.
    Oldham RK, Dillman RO (2008) Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol 26(11):1774–1777. doi:10.1200/JCO.2007.15.7438PubMedGoogle Scholar
  91. 91.
    Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, Hensel M, Hopfinger G, Hess G, von Grunhagen U, Bergmann M, Catalano J, Zinzani PL, Caligaris-Cappio F, Seymour JF, Berrebi A, Jager U, Cazin B, Trneny M, Westermann A, Wendtner CM, Eichhorst BF, Staib P, Buhler A, Winkler D, Zenz T, Bottcher S, Ritgen M, Mendila M, Kneba M, Dohner H, Stilgenbauer S, International Group of I, German Chronic Lymphocytic Leukaemia Study G (2010) Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 376(9747):1164–1174. doi:10.1016/S0140-6736(10)61381-5PubMedGoogle Scholar
  92. 92.
    Robak T, Dmoszynska A, Solal-Celigny P, Warzocha K, Loscertales J, Catalano J, Afanasiev BV, Larratt L, Geisler CH, Montillo M, Zyuzgin I, Ganly PS, Dartigeas C, Rosta A, Maurer J, Mendila M, Saville MW, Valente N, Wenger MK, Moiseev SI (2010) Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol 28(10):1756–1765. doi:10.1200/JCO.2009.26.4556PubMedGoogle Scholar
  93. 93.
    Habermann TM, Weller EA, Morrison VA, Gascoyne RD, Cassileth PA, Cohn JB, Dakhil SR, Woda B, Fisher RI, Peterson BA, Horning SJ (2006) Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 24(19):3121–3127. doi:10.1200/JCO.2005.05.1003PubMedGoogle Scholar
  94. 94.
    Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel JH, Beers SA, French RR, van Meerten T, Ebeling S, Vink T, Slootstra JW, Parren PW, Glennie MJ, van de Winkel JG (2006) The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 177(1):362–371PubMedGoogle Scholar
  95. 95.
    Wierda WG, Kipps TJ, Mayer J, Stilgenbauer S, Williams CD, Hellmann A, Robak T, Furman RR, Hillmen P, Trneny M, Dyer MJ, Padmanabhan S, Piotrowska M, Kozak T, Chan G, Davis R, Losic N, Wilms J, Russell CA, Osterborg A, Hx CDSI (2010) Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol 28(10):1749–1755. doi:10.1200/JCO.2009.25.3187PubMedGoogle Scholar
  96. 96.
    Wierda WG, Padmanabhan S, Chan GW, Gupta IV, Lisby S, Osterborg A, Hx CDSI (2011) Ofatumumab is active in patients with fludarabine-refractory CLL irrespective of prior rituximab: results from the phase 2 international study. Blood 118(19):5126–5129. doi:10.1182/blood-2011-04-348656PubMedGoogle Scholar
  97. 97.
    Wierda WG, Kipps TJ, Durig J, Griskevicius L, Stilgenbauer S, Mayer J, Smolej L, Hess G, Griniute R, Hernandez-Ilizaliturri FJ, Padmanabhan S, Gorczyca M, Chang CN, Chan G, Gupta I, Nielsen TG, Russell CA, Study I (2011) Chemoimmunotherapy with O-FC in previously untreated patients with chronic lymphocytic leukemia. Blood 117(24):6450–6458. doi:10.1182/blood-2010-12-323980PubMedGoogle Scholar
  98. 98.
    Maloney DG (2012) Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med 366(21):2008–2016. doi:10.1056/NEJMct1114348PubMedGoogle Scholar
  99. 99.
    Press OW, Unger JM, Braziel RM, Maloney DG, Miller TP, Leblanc M, Fisher RI, Southwest Oncology G (2006) Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin’s lymphoma: five-year follow-up of Southwest Oncology Group Protocol S9911. J Clin Oncol 24(25):4143–4149. doi:10.1200/JCO.2006.05.8198PubMedGoogle Scholar
  100. 100.
    Morschhauser F, Radford J, Van Hoof A, Vitolo U, Soubeyran P, Tilly H, Huijgens PC, Kolstad A, dʼAmore F, Gonzalez Diaz M, Petrini M, Sebban C, Zinzani PL, van Oers MH, van Putten W, Bischof-Delaloye A, Rohatiner A, Salles G, Kuhlmann J, Hagenbeek A (2008) Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol 26(32):5156–5164. doi:10.1200/JCO.2008.17.2015PubMedGoogle Scholar
  101. 101.
    Bradley AM, Devine M, Deremer D (2013) Brentuximab vedotin: an anti-CD30 antibody-drug conjugate. Am J Health Syst Pharm 70(7):589–597. doi:10.2146/ajhp110608PubMedGoogle Scholar
  102. 102.
    Rothe A, Sasse S, Goergen H, Eichenauer DA, Lohri A, Jager U, Bangard C, Boll B, von Bergwelt Baildon M, Theurich S, Borchmann P, Engert A (2012) Brentuximab vedotin for relapsed or refractory CD30 + hematologic malignancies: the German Hodgkin Study Group experience. Blood 120(7):1470–1472. doi:10.1182/blood-2012-05-430918PubMedGoogle Scholar
  103. 103.
    Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, Ramchandren R, Bartlett NL, Cheson BD, de Vos S, Forero-Torres A, Moskowitz CH, Connors JM, Engert A, Larsen EK, Kennedy DA, Sievers EL, Chen R (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkinʼs lymphoma. J Clin Oncol 30(18):2183–2189. doi:10.1200/JCO.2011.38.0410PubMedCentralPubMedGoogle Scholar
  104. 104.
    Pro B, Advani R, Brice P, Bartlett NL, Rosenblatt JD, Illidge T, Matous J, Ramchandren R, Fanale M, Connors JM, Yang Y, Sievers EL, Kennedy DA, Shustov A (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol 30(18):2190–2196. doi:10.1200/JCO.2011.38.0402PubMedGoogle Scholar
  105. 105.
    Frueh FW, Amur S, Mummaneni P, Epstein RS, Aubert RE, DeLuca TM, Verbrugge RR, Burckart GJ, Lesko LJ (2008) Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacotherapy 28(8):992–998. doi:10.1592/phco.28.8.992PubMedGoogle Scholar
  106. 106.
    Nowell SA, Ahn J, Rae JM, Scheys JO, Trovato A, Sweeney C, MacLeod SL, Kadlubar FF, Ambrosone CB (2005) Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 91(3):249–258. doi:10.1007/s10549-004-7751-xPubMedGoogle Scholar
  107. 107.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566. doi:10.1038/nature05945PubMedGoogle Scholar
  108. 108.
    Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112(13):4808–4817. doi:10.1182/blood-2008-07-077958PubMedGoogle Scholar
  109. 109.
    Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293PubMedGoogle Scholar
  110. 110.
    Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037. doi:10.1056/NEJM200104053441401PubMedGoogle Scholar
  111. 111.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954. doi:10.1038/nature00766PubMedGoogle Scholar
  112. 112.
    Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P, Tuveson D, Silberman S, Capdeville R, Dimitrijevic S, Druker B, Demetri GD (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344(14):1052–1056. doi:10.1056/NEJM200104053441404PubMedGoogle Scholar
  113. 113.
    Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, Albain KS, Cella D, Wolf MK, Averbuch SD, Ochs JJ, Kay AC (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290(16):2149–2158. doi:10.1001/jama.290.16.2149PubMedGoogle Scholar
  114. 114.
    Beatson G (1896) On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustrative cases. Lancet 148:162–165Google Scholar
  115. 115.
    Ahn ER, Vogel CL (2012) Dual HER2-targeted approaches in HER2-positive breast cancer. Breast Cancer Res Treat 131(2):371–383. doi:10.1007/s10549-011-1781-yPubMedGoogle Scholar
  116. 116.
    Daniele L, Sapino A (2009) Anti-HER2 treatment and breast cancer: state of the art, recent patents, and new strategies. Recent Pat Anticancer Drug Discov 4(1):9–18PubMedGoogle Scholar
  117. 117.
    Hicks DG, Kulkarni S (2008) Trastuzumab as adjuvant therapy for early breast cancer: the importance of accurate human epidermal growth factor receptor 2 testing. Arch Pathol Lab Med 132(6):1008–1015PubMedGoogle Scholar
  118. 118.
    King CR, Kraus MH, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229(4717):974–976PubMedGoogle Scholar
  119. 119.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792. doi:10.1056/NEJM200103153441101PubMedGoogle Scholar
  120. 120.
    Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, Vogelstein B (1987) Prevalence of ras gene mutations in human colorectal cancers. Nature 327(6120):293–297. doi:10.1038/327293a0PubMedGoogle Scholar
  121. 121.
    Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Cote JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66(8):3992–3995. doi:10.1158/0008-5472.CAN-06-0191PubMedGoogle Scholar
  122. 122.
    de The H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347(6293):558–561. doi:10.1038/347558a0PubMedGoogle Scholar
  123. 123.
    Huang ME, Ye YC, Chen SR, Zhao JC, Gu LJ, Cai JR, Zhao L, Xie JX, Shen ZX, Wang ZY (1987) All-trans retinoic acid with or without low dose cytosine arabinoside in acute promyelocytic leukemia. Report of 6 cases. Chin Med J 100(12):949–953PubMedGoogle Scholar
  124. 124.
    Patel JN, Mandock K, McLeod HL (2014) Clinically relevant cancer biomarkers and pharmacogenetic assays. J Oncol Pharm Pract 20(1):65-72. doi:10.1177/1078155212473862Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jai N. Patel
    • 1
  • Christine M. Walko
    • 2
  • Federico Innocenti
    • 3
    Email author
  1. 1.Levine Cancer InstituteCarolinas HealthCare SystemCharlotteUSA
  2. 2.The DeBartolo Family Personalized Medicine InstituteMoffitt Cancer CenterTampaUSA
  3. 3.UNC Institute for Pharmacogenomics and Individualized TherapyUniversity of North Carolina Eshelman School of PharmacyChapel HillUSA

Personalised recommendations