Skip to main content

Fractional Advection-Diffusion Equation and Associated Diffusive Stresses

  • Chapter
  • First Online:
Fractional Thermoelasticity

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 219))

Abstract

The theory of diffusive stresses deals with mechanical and diffusive effects in elastic body. The conventional theory is based on the classical Fick law, which relates the matter flux to the concentration gradient. In combination with the balance equation for mass, this law leads to the classical diffusion equation. We study nonlocal generalizations of the diffusive flux governed by the Fick law and of the advection flux associated with the velocity field. The nonlocal constitutive equation with the long-tail power memory kernel results in the fractional advection-diffusion equation. The nonlocal constitutive equation with the middle-tail memory kernel expressed in terms of the Mittag-Leffler function leads to the fractional advection-diffusion equation of the Cattaneo type. The theory of diffusive stresses based on the fractional advection-diffusion equation is formulated. Fundamental solutions to the Cauchy and source problems and associated diffisive stresses are studied. The numerical results are illustrated graphically.

When you run into something interesting, drop everything else and study it.

B.F. Skinner

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Rehim, E.A.: Explicit approximation solutions and proof of convergence of space-time fractional advection dispersion equations. Appl. Math. 4, 1427–1440 (2013)

    Article  Google Scholar 

  2. Barkai, E.: Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E 63, 046118-1-17 (2001)

    Google Scholar 

  3. Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 61, 132–138 (2000)

    Article  MathSciNet  Google Scholar 

  4. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)

    Article  Google Scholar 

  5. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  6. Chaves, A.S.: A fractional diffusion equation to describe Lévy flights. Phys. Lett. A 239, 13–16 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cushman, J.H., Ginn, T.R.: Fractional advection-dispersion equation: a classical mass balance with convolution-Fickian flux. Water Resour. Res. 36, 3763–3766 (2000)

    Google Scholar 

  8. Feller, W.: An Introduction to Probability Theory and Its Applications, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  9. Huang, F., Liu, F.: The time fractional diffusion equation and the advection-dispersion equation. ANZIAM J. 46, 317–330 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Huang, H., Cao, X.: Numerical method for two dimensional fractional reaction subdiffusion equation. Eur. Phys. J. Spec. Top. 222, 1961–1973 (2013)

    Article  Google Scholar 

  11. Jespersen, S., Metzler, R., Fogedby, H.S.: Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E 59, 2736–2745 (1999)

    Article  Google Scholar 

  12. Jumarie, G.: A Fokker-Planck equation of fractional order with respect to time. J. Math. Phys. 33, 3536–3542 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karatay, I., Bayramoglu, S.R.: An efficient scheme for time fractional advection dispersion equations. Appl. Math. Sci. 6, 4869–4878 (2012)

    MATH  MathSciNet  Google Scholar 

  14. Kaviany, M.: Principles of Heat Transfer in Porous Media, 2nd edn. Springer, New York (1995)

    Book  MATH  Google Scholar 

  15. Kolwankar, K.M., Gangal, A.D.: Local fractional Fokker-Planck equation. Phys. Rev. Lett. 80, 214–217 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kusnezov, D., Bulgac, A., Dang, G.D.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)

    Article  Google Scholar 

  17. Liu, F., Anh, V., Turner, I., Zhuang, P.: Time-fractional advection-dispersion equation. J. Appl. Math. Comput. 13, 233–245 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, Q., Liu, F., Turner, I., Anh, V.: Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method. J. Comput. Phys. 222, 57–70 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Merdan, M.: Analytical approximate solutions of fractionel convection-diffusion equation with modified Riemann-Liouville derivative by means of fractional variational iteration method. Iranian J. Sci. Technol. A1, 83–92 (2013)

    MathSciNet  Google Scholar 

  23. Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82, 3563–3567 (1999)

    Article  Google Scholar 

  24. Nield, D.D., Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  25. Nowacki, W.: Dynamical problems of thermodiffusion in solids. Bull. Acad. Polon. Sci., Sér. Sci. Technol. 23, 55–64, 129–135, 257–266 (1974)

    Google Scholar 

  26. Nowacki, W., Olesiak, Z.S.: Thermodiffusion in Solids. Polish Scientific Publishers (PWN), Warsaw (1991) (in Polish)

    Google Scholar 

  27. Parkus, H.: Instationäre Wärmespannungen. Springer, Wien (1959)

    Book  MATH  Google Scholar 

  28. Pidstrygach, Ya.S.: Differential equations of thermodiffusion problem in isotropic deformable solid. Dop. Ukrainian Acad. Sci. (2), 169–172 (1961) (in Ukrainian)

    Google Scholar 

  29. Pidstrygach, Ya.S.: Differential equations of the diffusive strain theory of a solid. Dop. Ukrainian Acad. Sci. (3), 336–339 (1963) (in Ukrainian)

    Google Scholar 

  30. Pidstryhach, Ya.S.: Selected Papers. Naukova Dumka, Kyiv (1995) (in Ukrainian and Russian)

    Google Scholar 

  31. Podstrigach, Ya.S.: Theory of diffusive deformation of isotropic continuum. Issues Mech. Real Solid 2, 71–99 (1964) (in Russian)

    Google Scholar 

  32. Podstrigach, Ya.S.: Diffusion theory of inelasticity of metals. J. Appl. Mech. Technol. Phys. (2), 67–72 (1965) (in Russian)

    Google Scholar 

  33. Podstrigach, Ya.S., Povstenko, Y.Z.: Introduction to Mechanics of Surface Phenomena in Deformable Solids. Naukova Dumka, Kiev (1985) (in Russian)

    Google Scholar 

  34. Povstenko, Y.: Fractional heat conduction equation and associated thermal stresses. J. Therm. Stress. 28, 83–102 (2005)

    Article  MathSciNet  Google Scholar 

  35. Povstenko, Y.: Stresses exerted by a source of diffusion in a case of a non-parabolic diffusion equation. Int. J. Eng. Sci. 43, 977–991 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Povstenko, Y.: Fundamental solution to three-dimensional diffusion-wave equation and associated diffusive stresses. Chaos, Solitons Fractals 36, 961–972 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Povstenko Y. Fundamental solutions to time-fractional advection diffusion equation in a case of two space variables. Math. Probl. Eng. 2014, 705364-1-7 (2014)

    Google Scholar 

  38. Povstenko, Y.: Theory of diffusive stresses based on the fractional advection-diffusion equation. In: Abi Zeid Daou, R., Xavier, M. (eds.) Fractional Calculus: Applications, pp. 227–242. NOVA Science Publisher, New York (2015)

    Google Scholar 

  39. Povstenko, Y.: Space-time-fractional advection diffusion equation in a plane. In: Latawiec, J.K., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-integer Order Systems, 6th Conference on Non-integer Order Calculus and Its Applications, Opole, Poland. Lecture Notes in Electrical Engineering, vol. 320, pp. 275–284. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  40. Povstenko, Y., Klekot, J.: Fundamental solution to the Cauchy problem for the time-fractional advection-diffusion equation. J. Appl. Math. Comput. Mech. 13, 95–102 (2014)

    Google Scholar 

  41. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series. Vol. 1: Elementary Functions. Gordon and Breach, Amsterdam (1986)

    Google Scholar 

  42. Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  43. Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7, 753–764 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  44. Scheidegger, A.E.: The Physics of Flow Through Porous Media, 3rd edn. University of Toronto Press, Toronto (1974)

    Google Scholar 

  45. Schneider, W.R.: Fractional diffusion. In: Lima, R., Streit, L, Viela Mendes, R. (eds.) Dynamics and Stochastic Processes, Lecture Notes in Physics, vol. 355, pp. 276–286. Springer, Berlin (1990)

    Google Scholar 

  46. Schumer, R., Meerschaet, M.M., Baeumer, B.: Fractional advection-dispersion equations for modeling transport at the Earth surface. J. Geophys. Res. 114, F00A07-1-15 (2009)

    Google Scholar 

  47. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  48. Yanovsky, V.V., Chechkin, A.V., Schertzer, D., Tur, A.V.: Lévy anomalous diffusion and fractional Fokker-Planck equation. Phys. A 282, 13–34 (2000)

    Article  Google Scholar 

  49. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  50. Zaslavsky, G.M., Edelman, M., Niyazov, B.A.: Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. Chaos 7, 159–181 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  51. Zhang, Y., Benson, D.A., Meerschaert, M.M., Scheffler, H.-P.: On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123, 89–110 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zhang, Y., Benson, D.A., Meerschaert, M.M., LaBolle E.M.: Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data. Water Resour. Res. 41, W05439-1-14 (2007)

    Google Scholar 

  53. Zheng, G.H., Wei, T.: Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math. 233, 2631–2640 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Povstenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Povstenko, Y. (2015). Fractional Advection-Diffusion Equation and Associated Diffusive Stresses. In: Fractional Thermoelasticity. Solid Mechanics and Its Applications, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-15335-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15335-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15334-6

  • Online ISBN: 978-3-319-15335-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics