Decentralised Evaluation of Temporal Patterns over Component-Based Systems at Runtime

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8997)


Self-adaptation allows systems to modify their structure and/or their behaviour depending on the environment and the system itself. Since reconfigurations must not happen at any but in suitable circumstances, guiding and controlling dynamic reconfigurations at runtime is an important issue. This paper contributes to two essential topics of the self-adaptation—a runtime temporal properties evaluation, and a decentralization of control loops. It extends the work on the adaptation of component-based systems at runtime via policies with temporal patterns by providings (a) specific progressive semantics of temporal patterns and (b) a decentralised method which is suitable to deal with temporal patterns of component-based systems at runtime. The implementation with the GROOVE tool constitutes a practical contribution.


Communication Overhead Atomic Event Adaptation Policy Dynamic Reconfiguration Configuration Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: Software Engineering, pp. 411–420 (1999)Google Scholar
  3. 3.
    Kouchnarenko, O., Weber, J.-F.: Adapting component-based systems at runtime via policies with temporal patterns. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 234–253. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis using GROOVE. Int. J. Softw. Tools Technol. Trans. 14, 15–40 (2012)CrossRefGoogle Scholar
  6. 6.
    Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Inf. Comput. 164, 322–344 (2001)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bozzelli, L., Murano, A., Peron, A.: Pushdown module checking. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 504–518. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Aminof, B., Legay, A., Murano, A., Serre, O., Vardi, M.Y.: Pushdown module checking with imperfect information. Inf. Comput. 223, 1–17 (2013)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. Int. J. Logic Comput. 20, 651–674 (2010)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Kim, M., Lee, I., Shin, J., Sokolsky, O., et al.: Monitoring, checking, and steering of real-time systems. ENTCS 70, 95–111 (2002)Google Scholar
  11. 11.
    Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal component model and its support in java. Softw. Pract. Exper. 36, 1257–1284 (2006)CrossRefGoogle Scholar
  12. 12.
    Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal Asp. Comput. 17, 390–422 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A component-based middleware platform for reconfigurable service-oriented architectures. Softw. Practice Experience 42, 559–583 (2012)CrossRefGoogle Scholar
  14. 14.
    Garavel, H., Mateescu, R., Serwe, W.: Large-scale distributed verification using cadp: Beyond clusters to grids. Electr. Notes Theor. Comput. Sci. 296, 145–161 (2013)CrossRefGoogle Scholar
  15. 15.
    Dormoy, J., Kouchnarenko, O., Lanoix, A.: Runtime verification of temporal patterns for dynamic reconfigurations of components. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253, pp. 115–132. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Hamilton, A.G.: Logic for Mathematicians. Cambridge University Press, Cambridge (1978)MATHGoogle Scholar
  17. 17.
    Dormoy, J., Kouchnarenko, O., Lanoix, A.: When structural refinement of components keeps temporal properties over reconfigurations. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 171–186. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic reconfigurations of components. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS, vol. 6921, pp. 200–217. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Kouchnarenko, O., Weber, J.F.: Decentralised Evaluation of Temporal Patterns over Component-based Systems at Runtime (2014). Long version of the present paper available at:

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.FEMTO-ST CNRSUniversity of Franche-ComtéBesançonFrance
  2. 2.Inria/Nancy-Grand EstVillers-lès-NancyFrance

Personalised recommendations