Components as Location Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8997)

Abstract

This paper presents a process calculus framework for modeling ubiquitous computing systems and dynamic component-based structures as location graphs. A key aspect of the framework is its ability to model nested locations with sharing, while allowing the dynamic reconfiguration of the location graph, and the dynamic update of located processes.

References

  1. 1.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Barbier, F., Henderson-Sellers, B., Le Parc, A., Bruel, J.M.: Formalization of the whole-part relationship in the unified modeling language. IEEE Trans. Softw. Eng. 29(5), 459–470 (2003)CrossRefGoogle Scholar
  3. 3.
    Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for mobile processes with nominal data and logic. Logical Meth. Comput. Sci. 7(1) (2011)Google Scholar
  4. 4.
    Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 508–522. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  5. 5.
    Bol, R.N., Groote, J.F.: The meaning of negative premises in transition system specifications. J. ACM 43(5), 863–914 (1996)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bugliesi, M., Castagna, G., Crafa, S.: Access control for mobile agents: the calculus of boxed ambients. ACM Trans. Prog. Lang. Syst. 26(1), 57–124 (2004)CrossRefGoogle Scholar
  7. 7.
    Cardelli, L., Gordon, A.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Cattani, G.L., Sewell, P.: Models for name-passing processes: interleaving and causal. Inf. Comput. 190(2), 136–178 (2004)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process algebra. In: Handbook of Process Algebra. Elsevier (2001)Google Scholar
  10. 10.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002)CrossRefMATHGoogle Scholar
  11. 11.
    David, P.C., Ledoux, T., Léger, M., Coupaye, T.: Fpath and fscript: language support for navigation and reliable reconfiguration of fractal architectures. Ann. Telecommun. 64(1–2), 45–63 (2009)CrossRefGoogle Scholar
  12. 12.
    De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic systems programming: the SCEL language. ACM Trans. Auton. Adapt. Syst. 9(2), 7:1–7:29 (2014)CrossRefGoogle Scholar
  13. 13.
    Di Giusto, C., Stefani, J.-B.: Revisiting glue expressiveness in component-based systems. In: De Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 16–30. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  14. 14.
    Ferrari, G.-L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hyperedge replacement as a model for service oriented computing. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 22–43. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  15. 15.
    Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in service-oriented architectures. Softw. Syst. Model. 12(2), 349–367 (2013)CrossRefGoogle Scholar
  16. 16.
    Hirschkoff, D., Hirschowitz, T., Pous, D., Schmitt, A., Stefani, J.-B.: Component-oriented programming with sharing: containment is not ownership. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 389–404. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  17. 17.
    Kruchten, P.: Architectural blueprints - the 4+1 view model of software architecture. IEEE Softw. 12(6), 42–50 (1995)CrossRefGoogle Scholar
  18. 18.
    Lanese, I., Montanari, U.: Mapping fusion and synchronized hyperedge replacement into logic programming. Theory Pract. Logic Program. 7(1–2), 123–151 (2007)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Lenglet, S., Schmitt, A., Stefani, J.B.: Characterizing contextual equivalence in calculi with passivation. Inf. Comput. 209(11), 1390–1433 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press, New York (2009)CrossRefMATHGoogle Scholar
  21. 21.
    Mousavi, M.R., Reniers, M.A., Groote, J.F.: SOS formats and meta-theory: 20 years after. Theor. Comput. Sci. 373(3), 238–272 (2007)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Oquendo, F.: \(\pi \)-ADL: an architecture description language based on the higher-order \(\pi \)-calculus for specifying dynamic and mobile software architectures. ACM Softw. Eng. Notes 29(4), 1–14 (2004)CrossRefGoogle Scholar
  23. 23.
    Przymusinski, T.C.: The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae 13, 445–464 (1990)MATHMathSciNetGoogle Scholar
  24. 24.
    Sangiorgi, D., Walker, D.: The \(\pi \)-calculus: A Theory of Mobile Processes. Cambridge University Press, New York (2001)Google Scholar
  25. 25.
    Schmitt, A., Stefani, J.-B.: The kell calculus: a family of higher-order distributed process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267, pp. 146–178. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  26. 26.
    Tripakis, S., Stergiou, C., Shaver, C., Lee, E.A.: A modular formal semantics for ptolemy. Math. Struct. Comput. Sci. 23(4), 834–881 (2013)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    van Glabbeek, R.J.: The meaning of negative premises in transition system specifications II. J. Log. Algebr. Program. 60–61, 229–258 (2004)CrossRefGoogle Scholar
  28. 28.
    Wermelinger, M., Fiadeiro, J.L.: A graph transformation approach to software architecture reconfiguration. Sci. Comput. Program. 44(2), 133–155 (2002)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.INRIASaint-IsmierFrance

Personalised recommendations