Skip to main content

Atmospheric PECVD Growth of Vertically-Oriented Graphene

  • Chapter
  • First Online:
Vertically-Oriented Graphene
  • 1512 Accesses

Abstract

Vertically-oriented graphene (VG) sheets have the potential for many exciting energy and environmental applications due to their unique morphology and properties. However, it is necessary to realize the large-scale synthesis of this novel material at a low cost before we can make it economically viable for its widespread applications. It is theoretically suggested and experimentally proven that the productivity of VG is dependent on pressure, and atmospheric pressure growth could improve the efficiency and lower the cost of VG production. In the first part of this chapter, we examine how the operating pressure affects the VG production in the plasma-enhanced chemical vapor deposition (PECVD). It is also important to have the capability to grow VG on different substrates so that VG can be integrated into devices/systems for specific applications. Fortunately, the successful synthesis of VG on different substrates in PECVD processes has been realized, which is introduced in the second part of this chapter.

Part of this chapter was adapted from our review article “Plasma-Enhanced Chemical Vapor Deposition Synthesis of Vertically-oriented Graphene Nanosheets,” Nanoscale, 5(12), 5180–5204, 2013 (DOI: 10.1039/C3NR33449J)—Reproduced by permission of The Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bo, Z., Yang, Y., Yu, K., Chen, J., Yan, J., & Cen, K. (2013). Plasma-enhanced chemical vapor deposition synthesis of vertically-oriented graphene nanosheets,” Nanoscale, 5(12), 5180–5204.

    Google Scholar 

  2. Paschen, F. (1889). Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik, 273(5), 69–96.

    Article  Google Scholar 

  3. Lieberman, M. A., & Lichtenberg, A. J. (2005). Principles of plasma discharges and materials processing (2nd ed., pp. 1–757). New Jersey: Wiley.

    Google Scholar 

  4. Bo, Z., Yu, K., Lu, G., Wang, P., Mao, S., & Chen, J. (2011). Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon, 49(6), 1849–1858.

    Article  Google Scholar 

  5. Takeuchi, W., Sasaki, H., Kato, S., Takashima, S., Hiramatsu, M., & Hori, M. (2009). Development of measurement technique for carbon atoms employing vacuum ultraviolet absorption spectroscopy with a microdischarge hollow-cathode lamp and its application to diagnostics of nanographene sheet material formation plasmas. Journal of Applied Physics, 105(11), 113305.

    Article  Google Scholar 

  6. Wu, Y. H., Yang, B. J., Han, G. C., Zong, B. Y., Ni, H. Q., Luo, P., et al. (2002). Fabrication of a class of nanostructured materials using carbon nanowalls as the templates. Advanced Functional Materials, 12(8), 489–494.

    Article  Google Scholar 

  7. Yu, K., Bo, Z., Lu, G., Mao, S., Cui, S., Zhu, Y., et al. (2011). Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Research Letters, 6, 202.

    Article  Google Scholar 

  8. Wu, Y. H., Qiao, P. W., Chong, T. C., & Shen, Z. X. (2002). Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Advanced Materials, 14(1), 64–67.

    Article  Google Scholar 

  9. Sato, G., Morio, T., Kato, T., & Hatakeyama, R. (2006). Fast growth of carbon nanowalls from pure methane using helicon plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics, 45(6A), 5210–5212.

    Google Scholar 

  10. Tyler, T., Shenderova, O., Ray, M., Dalton, J., Wang, J., Outlaw, R., et al. (2006). Back-gated milliampere-class field emission device based on carbon nanosheets. Journal of Vacuum Science and Technology B, 24(5), 2295–2301.

    Article  Google Scholar 

  11. Bo, Z., Wen, Z., Kim, H., Lu, G., Yu, K., & Chen, J. (2012). One-step fabrication and capacitive behavior of electrochemical double layer capacitor electrodes using vertically-oriented graphene directly grown on metal. Carbon, 50(12), 4379–4387.

    Article  Google Scholar 

  12. Obraztsov, A. N., Volkov, A. P., Nagovitsyn, K. S., Nishimura, K., Morisawa, K., Nakano, Y., & Hiraki, A. (2002). CVD growth and field emission properties of nanostructured carbon films. Journal of Physics D-Applied Physics, 35(4), 357–362.

    Article  Google Scholar 

  13. Yu, K., Wang, P., Lu, G., Chen, K.-H., Bo, Z., & Chen, J. (2011). Patterning vertically-oriented graphene sheets for nanodevice applications. Journal of Physical Chemistry Letters, 2(6), 537–542.

    Article  Google Scholar 

  14. Wang, J. J., Zhu, M. Y., Outlaw, R. A., Zhao, X., Manos, D. M., Holloway, B. C., & Mammana, V. P. (2004). Free-standing subnanometer graphite sheets. Applied Physics Letters, 85(7), 1265–1267.

    Article  Google Scholar 

  15. Bo, Z., Cui, S., Yu, K., Lu, G., Mao, S., & Chen, J. (2011). Note: continuous synthesis of uniform vertical graphene on cylindrical surfaces. Review of Scientific Instruments, 82(8), 086116.

    Article  Google Scholar 

  16. Hiramatsu, M., Shiji, K., Amano, H., & Hori, M. (2004). Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters, 84(23), 4708–4710.

    Article  Google Scholar 

  17. Chuang, A. T. H., Boskovic, B. O., & Robertson, J. (2006). Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition. Diamond and Related Materials, 15(4–8), 1103–1106.

    Article  Google Scholar 

  18. Kondo, S., Hori, M., Yamakawa, K., Den, S., Kano, H., & Hiramatsu, M. (2008). Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. Journal of Vacuum Science and Technology B, 26(4), 1294–1300.

    Article  Google Scholar 

  19. Teii, K., Shimada, S., Nakashima, M., & Chuang, A. T. H. (2009). Synthesis and electrical characterization of n-type carbon nanowalls. Journal of Applied Physics, 106(8), 084303.

    Article  Google Scholar 

  20. Wang, Z., Shoji, M., & Ogata, H. (2011). Carbon nanosheets by microwave plasma enhanced chemical vapor deposition in CH4-Ar system. Applied Surface Science, 257(21), 9082–9085.

    Article  Google Scholar 

  21. Zhu, M. Y., Outlaw, R. A., Bagge-Hansen, M., Chen, H. J., & Manos, D. M. (2011). Enhanced field emission of vertically-oriented carbon nanosheets synthesized by C2H2/H-2 plasma enhanced CVD. Carbon, 49(7), 2526–2531.

    Article  Google Scholar 

  22. Shang, N. G., Au, F. C. K., Meng, X. M., Lee, C. S., Bello, I., & Lee, S. T. (2002). Uniform carbon nanoflake films and their field emissions. Chemical Physics Letters, 358(3–4), 187–191.

    Article  Google Scholar 

  23. Zhang, Y., Du, J. L., Tang, S., Liu, P., Deng, S. Z., Chen, J., & Xu, N. S. (2012). Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology. Nanotechnology, 23(1), 015202.

    Article  Google Scholar 

  24. Shiji, K., Hiramatsu, M., Enomoto, A., Nakamura, N., Amano, H., & Hori, M. (2005). Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition. Diamond and Related Materials, 14(3–7), 831–834.

    Article  Google Scholar 

  25. Rao, B. P. C., Maheswaran, R., Ramaswamy, S., Mahapatra, O., Gopalakrishanan, C., & Thiruvadigal, D. J. (2009). Low temperature growth of carbon nanostructures by radio frequency-plasma enhanced chemical vapor deposition (low temperature growth of carbon nanostructures by RF-PECVD). Fullerenes, Nanotubes, and Carbon Nanostructures, 17(6), 625–635.

    Article  Google Scholar 

  26. Kondo, S., Kawai, S., Takeuchi, W., Yamakawa, K., Den, S., Kano, H., et al. (2009). Initial growth process of carbon nanowalls synthesized by radical injection plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 106(9), 094302.

    Article  Google Scholar 

  27. Soin, N., Roy, S. S., O’Kane, C., McLaughlin, J. A. D., Lim, T. H., & Hetherington, C. J. D. (2011). Exploring the fundamental effects of deposition time on the microstructure of graphene nanoflakes by Raman scattering and X-ray diffraction. Crystal Engineering Communication, 13(1), 312–318.

    Article  Google Scholar 

  28. Cheng, C. Y., & Teii, K. (2012). Control of the growth regimes of nanodiamond and nanographite in microwave plasmas. IEEE Transactions on Plasma Science, 40(7), 1783–1788.

    Article  Google Scholar 

  29. Teii, K., & Ikeda, T. (2007). Effect of enhanced C-2 growth chemistry on nanodiamond film deposition. Applied Physics Letters, 90(11), 111504.

    Article  Google Scholar 

  30. Tiwari, J. N., Tiwari, R. N., Singh, G., & Lin, K. L. (2011). Direct synthesis of vertically interconnected 3-D graphitic nanosheets on hemispherical carbon particles by microwave plasma CVD. Plasmonics, 6(1), 67–73.

    Article  Google Scholar 

  31. Mori, S., Ueno, T., & Suzuki, M. (2011). Synthesis of carbon nanowalls by plasma-enhanced chemical vapor deposition in a CO/H-2 microwave discharge system. Diamond and Related Materials, 20(8), 1129–1132.

    Article  Google Scholar 

  32. Takeuchi, W., Ura, M., Hiramatsu, M., Tokuda, Y., Kano, H., & Hori, M. (2008). Electrical conduction control of carbon nanowalls. Applied Physics Letters, 92(21), 213103.

    Article  Google Scholar 

  33. Krivchenko, V. A., Dvorkin, V. V., Dzbanovsky, N. N., Timofeyev, M. A., Stepanov, A. S., Rakhimov, A. T., et al. (2012). Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge. Carbon, 50(4), 1477–1487.

    Article  Google Scholar 

  34. Bo, Z., Yu, K., Lu, G., Cui, S., Mao, S., & Chen, J. (2011). Vertically-oriented graphene sheets grown on metallic wires for greener corona discharges: Lower power consumption and minimized ozone emission. Energy & Environmental Science, 4(7), 2525–2528.

    Article  Google Scholar 

  35. Krivchenko, V. A., Pilevsky, A. A., Rakhimov, A. T., Seleznev, B. V., Suetin, N. V., Timofeyev, M. A., et al. (2010). Nanocrystalline graphite: Promising material for high current field emission cathodes. Journal of Applied Physics, 107(1), 014315.

    Article  Google Scholar 

  36. Hiramatsu, M., & Hori, M. (2010). Carbon nanowalls: Synthehesis and emerging application. New York: Springer.

    Book  Google Scholar 

  37. Yu, K., Lu, G., Bo, Z., Mao, S., & Chen, J. (2011). Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. Journal of Physical Chemistry Letters, 2(13), 1556–1562.

    Article  Google Scholar 

  38. Parker, C. B., Raut, A. S., Brown, B., Stoner, B. R., & Glass, J. T. (2012). Three-dimensional arrays of graphenated carbon nanotubes. Journal of Materials Research, 27(7), 1046–1053.

    Article  Google Scholar 

  39. Cui, H., Zhou, O., & Stoner, B. R. (2000). Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. Journal of Applied Physics, 88(10), 6072–6074.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Bo, Z., Lu, G. (2015). Atmospheric PECVD Growth of Vertically-Oriented Graphene. In: Vertically-Oriented Graphene. Springer, Cham. https://doi.org/10.1007/978-3-319-15302-5_5

Download citation

Publish with us

Policies and ethics