Skip to main content

PECVD Synthesis of Vertically-Oriented Graphene: Precursor and Temperature Effects

  • Chapter
  • First Online:
Book cover Vertically-Oriented Graphene

Abstract

The plasma-enhanced chemical vapor deposition (PECVD) is an effective method for producing vertically-oriented graphene (VG) sheets, but it is also a very complex one because of the complexity associated with the plasma chemistry. In addition to the type of plasma sources discussed in Chap. 3, the morphology and structure of the PECVD-produced VG sheets are also strongly affected by a set of operating parameters, including precursors (e.g., feedstock gas type and composition, plasma gas type), the substrate temperature, and the operating pressure. In this chapter, we discuss two important operating parameters for the synthesis of VG in the PECVD process, specifically precursor and temperature.

Part of this chapter was adapted from our review article “Plasma-Enhanced Chemical Vapor Deposition Synthesis of Vertically-Oriented Graphene Nanosheets,” Nanoscale 5(12), 5180–5204, 2013 (DOI: 10.1039/C3NR33449J)—Reproduced by permission of The Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain, H. G., Karacuban, H., Krix, D., Becker, H.-W., Nienhaus, H., & Buck, V. (2011). Carbon nanowalls deposited by inductively coupled plasma enhanced chemical vapor deposition using aluminum acetylacetonate as precursor. Carbon, 49(15), 4987–4995.

    Article  Google Scholar 

  2. Bo, Z., Yang, Y., Yu, K., Chen, J., Yan, J., & Cen, K. (2013). Plasma-enhanced chemical vapor deposition synthesis of vertically-oriented graphene nanosheets. Nanoscale, 5(12), 5180–5204.

    Article  Google Scholar 

  3. Mori, T., Hiramatsu, M., Yamakawa, K., Takeda, K., & Hori, M. (2008). Fabrication of carbon nanowalls using electron beam excited plasma-enhanced chemical vapor deposition. Diamond and Related Materials, 17(7–10), 1513–1517.

    Article  Google Scholar 

  4. Sato, G., Morio, T., Kato, T., & Hatakeyama, R. (2006). Fast growth of carbon nanowalls from pure methane using helicon plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications and Review Papers, 45(6A), 5210–5212.

    Google Scholar 

  5. Chuang, A. T. H., Boskovic, B. O., & Robertson, J. (2006). Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition. Diamond and Related Materials, 15(4–8), 1103–1106.

    Article  Google Scholar 

  6. Teii, K., Shimada, S., Nakashima, M., & Chuang, A. T. H. (2009). Synthesis and electrical characterization of n-type carbon nanowalls. Journal of Applied Physics, 106(8), 084303.

    Article  Google Scholar 

  7. Soin, N., Roy, S. S., Lim, T. H., & McLaughlin, J. A. D. (2011). Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation. Materials Chemistry and Physics, 129(3), 1051–1057.

    Article  Google Scholar 

  8. Zhang, Y., Du, J. L., Tang, S., Liu, P., Deng, S. Z., Chen, J., et al. (2012). Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology. Nanotechnology, 23(1), 015202.

    Article  Google Scholar 

  9. Mori, S., Ueno, T., & Suzuki, M. (2011). Synthesis of carbon nanowalls by plasma-enhanced chemical vapor deposition in a CO/H-2 microwave discharge system. Diamond and Related Materials, 20(8), 1129–1132.

    Article  Google Scholar 

  10. Chatei, H., Belmahi, M., Assouar, M. B., Le Brizoual, L., Bourson, P., & Bougdira, J. (2006). Growth and characterisation of carbon nanostructures obtained by MPACVD system using CH4/CO2 gas mixture. Diamond and Related Materials, 15(4–8), 1041–1046.

    Article  Google Scholar 

  11. Shiji, K., Hiramatsu, M., Enomoto, A., Nakamura, N., Amano, H., & Hori, M. (2005). Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition. Diamond and Related Materials, 14(3–7), 831–834.

    Article  Google Scholar 

  12. Shang, N. G., Papakonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., et al. (2008). Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Advanced Functional Materials, 18(21), 3506–3514.

    Article  Google Scholar 

  13. Zhu, M. Y., Outlaw, R. A., Bagge-Hansen, M., Chen, H. J., & Manos, D. M. (2011). Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H-2 plasma enhanced CVD. Carbon, 49(7), 2526–2531.

    Article  Google Scholar 

  14. Wang, J. J., Zhu, M. Y., Outlaw, R. A., Zhao, X., Manos, D. M., & Holloway, B. C. (2004). Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon, 42(14), 2867–2872.

    Article  Google Scholar 

  15. Obraztsov, A. N., Volkov, A. P., Nagovitsyn, K. S., Nishimura, K., Morisawa, K., Nakano, Y., et al. (2002). CVD growth and field emission properties of nanostructured carbon films. Journal of Physics D-Applied Physics, 35(4), 357–362.

    Article  Google Scholar 

  16. Obraztsov, A. N., Zolotukhin, A. A., Ustinov, A. O., Volkov, A. P., Svirko, Y., & Jefimovs, K. (2003). DC discharge plasma studies for nanostructured carbon CVD. Diamond and Related Materials, 12(3–7), 917–920.

    Article  Google Scholar 

  17. Gruen, D. M. (1999). Nanocrystalline diamond films. Annual Review of Materials Science, 29, 211–259.

    Article  Google Scholar 

  18. Vizireanu, S., Stoica, S. D., Luculescu, C., Nistor, L. C., Mitu, B., & Dinescu, G. (2010). Plasma techniques for nanostructured carbon materials synthesis. A case study: Carbon nanowall growth by low pressure expanding RF plasma. Plasma Sources Science and Technology, 19(3), 034016.

    Article  Google Scholar 

  19. Hiramatsu, M., Kato, K., Lau, C. H., Foord, J. S., & Hori, M. (2003). Measurement of C-2 radical density in microwave methane/hydrogen plasma used for nanocrystalline diamond film formation. Diamond and Related Materials, 12(3–7), 365–368.

    Article  Google Scholar 

  20. Goyette, A. N., Matsuda, Y., Anderson, L. W., & Lawler, J. E. (1998). C-2 column densities in H-2/Ar/CH4 microwave plasmas. Journal of Vacuum Science and Technology a-Vacuum Surfaces and Films, 16(1), 337–340.

    Article  Google Scholar 

  21. Shiomi, T., Nagai, H., Kato, K., Hiramatsu, M., & Nawata, M. (2001). Detection of C-2 radicals in low-pressure inductively coupled plasma source for diamond chemical vapor deposition. Diamond and Related Materials, 10(3–7), 388–392.

    Article  Google Scholar 

  22. Zhu, W., Inspektor, A., Badzian, A. R., McKenna, T., & Messier, R. (1990). Effects of noble-gases on diamond deposition from methane-hydrogen microwave plasmas. Journal of Applied Physics, 68(4), 1489–1496.

    Article  Google Scholar 

  23. Takeuchi, W., Ura, M., Hiramatsu, M., Tokuda, Y., Kano, H., & Hori, M. (2008). Electrical conduction control of carbon nanowalls. Applied Physics Letters, 92(21), 213103.

    Article  Google Scholar 

  24. Hiramatsu, M., Shiji, K., Amano, H., & Hori, M. (2004). Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters, 84(23), 4708–4710.

    Article  Google Scholar 

  25. Kondo, S., Hori, M., Yamakawa, K., Den, S., Kano, H., & Hiramatsu, M. (2008). Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. Journal of Vacuum Science and Technology B, 26(4), 1294–1300.

    Article  Google Scholar 

  26. Bo, Z., Yu, K., Lu, G., Wang, P., Mao, S., & Chen, J. (2011). Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon, 49(6), 1849–1858.

    Article  Google Scholar 

  27. Wang, Z., Shoji, M., & Ogata, H. (2011). Carbon nanosheets by microwave plasma enhanced chemical vapor deposition in CH4-Ar system. Applied Surface Science, 257(21), 9082–9085.

    Article  Google Scholar 

  28. Wu, Y. H., Qiao, P. W., Chong, T. C., & Shen, Z. X. (2002). Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Advanced Materials, 14(1), 64–67.

    Article  Google Scholar 

  29. Malesevic, A., Vitchev, R., Schouteden, K., Volodin, A., Zhang, L., Van Tendeloo, G., et al. (2008). Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology, 19(30), 305604.

    Article  Google Scholar 

  30. Zeng, L., Lei, D., Wang, W., Liang, J., Wang, Z., Yao, N., et al. (2008). Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method. Applied Surface Science, 254(6), 1700–1704.

    Article  Google Scholar 

  31. Zhu, M., Wang, J., Holloway, B. C., Outlaw, R. A., Zhao, X., Hou, K., et al. (2007). A mechanism for carbon nanosheet formation. Carbon, 45(11), 2229–2234.

    Article  Google Scholar 

  32. Kurita, S., Yoshimura, A., Kawamoto, H., Uchida, T., Kojima, K., Tachibana, M., et al. (2005). Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 97(10), 104320.

    Article  Google Scholar 

  33. Cheng, C. Y., & Teii, K. (2012). Control of the growth regimes of nanodiamond and nanographite in microwave plasmas. IEEE Transactions on Plasma Science, 40(7), 1783–1788.

    Article  Google Scholar 

  34. Kondo, S., Kawai, S., Takeuchi, W., Yamakawa, K., Den, S., Kano, H., et al. (2009). Initial growth process of carbon nanowalls synthesized by radical injection plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 106(9), 094302.

    Article  Google Scholar 

  35. Hori, M., Kondo, H., & Hiramatsu, M. (2011). Radical-controlled plasma processing for nanofabrication. Journal of Physics D-Applied Physics, 44(17), 174027.

    Article  Google Scholar 

  36. Zhu, M., Wang, J., Outlaw, R. A., Hou, K., Manos, D. M., & Holloway, B. C. (2007). Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diamond and Related Materials, 16(2), 196–201.

    Article  Google Scholar 

  37. Rao, B. P. C., Maheswaran, R., Ramaswamy, S., Mahapatra, O., Gopalakrishanan, C., & Thiruvadigal, D. J. (2009). Low temperature growth of carbon nanostructures by radio frequency-plasma enhanced chemical vapor deposition (low temperature growth of carbon nanostructures by RF-PECVD). Fullerenes, Nanotubes, and Carbon Nanostructures, 17(6), 625–635.

    Article  Google Scholar 

  38. Yu, K., Bo, Z., Lu, G., Mao, S., Cui, S., Zhu, Y., et al. (2011). Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Research Letters, 6, 202.

    Article  Google Scholar 

  39. Yamabe, C., Buckman, S. J., & Phelps, A. V. (1983). Measurement of free-free emission from low-energy-electron collisions with AR. Physical Review A, 27(3), 1345–1352.

    Article  Google Scholar 

  40. Shang, N. G., Staedler, T., & Jiang, X. (2006). Radial textured carbon nanoflake spherules. Applied Physics Letters, 89(10), 103112.

    Article  Google Scholar 

  41. Wang, E. G., Guo, Z. G., Ma, J., Zhou, M. M., Pu, Y. K., Liu, S., et al. (2003). Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth. Carbon, 41(9), 1827–1831.

    Article  Google Scholar 

  42. Vandevelde, T., Wu, T. D., Quaeyhaegens, C., Vlekken, J., D’Olieslaeger, M., & Stals, L. (1999). Correlation between the OES plasma composition and the diamond film properties during microwave PA-CVD with nitrogen addition. Thin Solid Films, 340(1–2), 159–163.

    Article  Google Scholar 

  43. Wu, Y. H., Yang, B. J., Zong, B. Y., Sun, H., Shen, Z. X., & Feng, Y. P. (2004). Carbon nanowalls and related materials. Journal of Materials Chemistry, 14(4), 469–477.

    Article  Google Scholar 

  44. Kersten, H., Deutsch, H., Steffen, H., Kroesen, G. M. W., & Hippler, R. (2001). The energy balance at substrate surfaces during plasma processing. Vacuum, 63(3), 385–431.

    Article  Google Scholar 

  45. Krivchenko, V. A., Dvorkin, V. V., Dzbanovsky, N. N., Timofeyev, M. A., Stepanov, A. S., Rakhimov, A. T., et al. (2012). Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge. Carbon, 50(4), 1477–1487.

    Article  Google Scholar 

  46. Fridman, A., & Kennedy, L. (2006). Plasma physics and engineering. New York: Taylor & Francis.

    Book  Google Scholar 

  47. Krivchenko, V., Shevnin, P., Pilevsky, A., Egorov, A., Suetin, N., Sen, V., et al. (2012). Influence of the growth temperature on structural and electron field emission properties of carbon nanowall/nanotube films synthesized by catalyst-free PECVD. Journal of Materials Chemistry, 22(32), 16458–16464.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Bo, Z., Lu, G. (2015). PECVD Synthesis of Vertically-Oriented Graphene: Precursor and Temperature Effects. In: Vertically-Oriented Graphene. Springer, Cham. https://doi.org/10.1007/978-3-319-15302-5_4

Download citation

Publish with us

Policies and ethics