Skip to main content

Introduction

  • Chapter
  • First Online:
Vertically-Oriented Graphene

Abstract

Graphene, a single layer of sp 2 hybridized carbon atoms, is a new ‘star’ in carbon allotropes. This one-atom-thick material has attracted enormous attention across the research community in the last decade due to its unique two-dimensional (2-D) structure and outstanding properties that are promising for both fundamental and applied research. Compared with conventional graphene sheets randomly laid down on a substrate, vertically-oriented graphene (VG) sheets possess advantageous characteristics, including exposed sharp edges, non-stacking morphology, and a large surface-to-volume ratio, and have thus shown great potential in various environmental and energy devices/systems. Plasma-enhanced chemical vapor deposition (PECVD) has been used widely as an effective method for VG synthesis. However, it remains a challenge for the controllable, large-scale, and low-cost growth of VG with desirable characteristics for specific applications. This chapter first provides a brief introduction to graphene, VG, and PECVD. Within that context, the main objective and the structure of the book are then presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science and Technology B, 25, 2558–2561.

    Article  Google Scholar 

  2. Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., et al. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902–907.

    Article  Google Scholar 

  3. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., et al. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308–1308.

    Article  Google Scholar 

  4. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

    Article  Google Scholar 

  5. Zhang, Y. B., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438(7065), 201–204.

    Article  Google Scholar 

  6. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191.

    Article  Google Scholar 

  7. Li, X. L., Wang, X. R., Zhang, L., Lee, S. W., & Dai, H. J. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319(5867), 1229–1232.

    Article  Google Scholar 

  8. Semenov, Y. G., Kim, K. W. & Zavada, J. M. (2007). Spin field effect transistor with a graphene channel. Applied Physics Letters, 91(15), 153105.

    Google Scholar 

  9. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., et al. (2006). Graphene-based composite materials. Nature, 442(7100), 282–286.

    Article  Google Scholar 

  10. Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., et al. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3(6), 327–331.

    Article  Google Scholar 

  11. Wang, S. G., Wang, J. J., Miraldo, P., Zhu, M. Y., Outlaw, R., Hou, K., et al. (2006). High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices. Applied Physics Letters, 89(18), 183103.

    Google Scholar 

  12. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., et al. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652–655.

    Article  Google Scholar 

  13. Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z. Q., & Sheehan, P. E. (2008). Reduced graphene oxide molecular sensors. Nano Letters, 8(10), 3137–3140.

    Article  Google Scholar 

  14. Lu, G. H., Ocola, L. E., & Chen, J. H. (2009). Gas detection using low-temperature reduced graphene oxide sheets. Applied Physics Letters, 94(8), 083111.

    Article  Google Scholar 

  15. Lu, G. H., Park, S., Yu, K. H., Ruoff, R. S., Ocola, L. E., Chen, J. H., et al. (2011). Toward practical gas sensing with highly reduced graphene oxide: A new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano, 5(2), 1154–1164.

    Article  Google Scholar 

  16. Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., & Weiller, B. H. (2009). Practical chemical sensors from chemically derived graphene. ACS Nano, 3(2), 301–306.

    Article  Google Scholar 

  17. Vedala, H., Sorescu, D. C., Kotchey, G. P., & Star, A. (2011). Chemical sensitivity of graphene edges decorated with metal nanoparticles. Nano Letters, 11(6), 2342–2347.

    Article  Google Scholar 

  18. Mao, S., Lu, G. H., Yu, K. H., Bo, Z., & Chen, J. H. (2010). Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Advanced Materials, 22(32), 3521–3526.

    Article  Google Scholar 

  19. Ohno, Y., Maehashi, K., & Matsumoto, K. (2010). Label-free biosensors based on aptamer-modified graphene field-effect transistors. Journal of the American Chemical Society, 132(51), 18012–18013.

    Article  Google Scholar 

  20. Balapanuru, J., Yang, J. X., Xiao, S., Bao, Q. L., Jahan, M., Polavarapu, L., et al. (2010). A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angewandte Chemie-International Edition, 49(37), 6549–6553.

    Article  Google Scholar 

  21. Patchkovskii, S., Tse, J. S., Yurchenko, S. N., Zhechkov, L., Heine, T., & Seifert, G. (2005). Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10439–10444.

    Article  Google Scholar 

  22. Park, N., Hong, S., Kim, G., & Jhi, S. H. (2007). Computational study of hydrogen storage characteristics of covalent-bonded graphenes. Journal of the American Chemical Society, 129(29), 8999–9003.

    Article  Google Scholar 

  23. Boukhvalov, D. W., Katsnelson, M. I., & Lichtenstein, A. I. (2008). Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Physical Review B, 77(3), 035427.

    Google Scholar 

  24. Watcharotone, S., Dikin, D. A., Stankovich, S., Piner, R., Jung, I., Dommett, G. H. B., et al. (2007). Graphene-silica composite thin films as transparent conductors. Nano Letters, 7(7), 1888–1892.

    Article  Google Scholar 

  25. Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8(1), 323–327.

    Article  Google Scholar 

  26. Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., et al. (2008). Graphene-based liquid crystal device. Nano Letters, 8(6), 1704–1708.

    Article  Google Scholar 

  27. Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., et al. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), 574–578.

    Article  Google Scholar 

  28. De, S., King, P. J., Lotya, M., O’Neill, A., Doherty, E. M., Hernandez, Y., et al. (2010). Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small, 6(3), 458–464.

    Article  Google Scholar 

  29. Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From conception to realization: An historial account of graphene and some perspectives for its future. Angewandte Chemie-International Edition, 49(49), 9336–9344.

    Article  Google Scholar 

  30. Melechko, A. V., Merkulov, V. I., McKnight, T. E., Guillorn, M. A., Klein, K. L., Lowndes, D. H., et al. (2005). Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. Journal of Applied Physics, 97(4), 041301.

    Article  Google Scholar 

  31. Wang, X. D., Summers, C. J., & Wang, Z. L. (2004). Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Letters, 4(3), 423–426.

    Article  Google Scholar 

  32. Whang, D., Jin, S., Wu, Y., & Lieber, C. M. (2003). Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Letters, 3(9), 1255–1259.

    Article  Google Scholar 

  33. Ajayan, P. M., Stephan, O., Colliex, C., & Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 265(5176), 1212–1214.

    Article  Google Scholar 

  34. Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., et al. (1996). Large-scale synthesis of aligned carbon nanotubes. Science, 274(5293), 1701–1703.

    Article  Google Scholar 

  35. Fan, S. S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. J. (1999). Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283(5401), 512–514.

    Article  Google Scholar 

  36. Baughman, R. H., Cui, C. X., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., et al. (1999). Carbon nanotube actuators. Science, 284(5418), 1340–1344.

    Article  Google Scholar 

  37. Nguyen, C. V., Delzeit, L., Cassell, A. M., Li, J., Han, J., & Meyyappan, M. (2002). Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Letters, 2(10), 1079–1081.

    Article  Google Scholar 

  38. Janowska, I., Wine, G., Ledoux, M.-J., & Pham-Huu, C. (2007). Structured silica reactor with aligned carbon nanotubes as catalyst support for liquid-phase reaction. Journal of Molecular Catalysis a-Chemical, 267(1–2), 92–97.

    Article  Google Scholar 

  39. Janowska, I., Hajiesmaili, S., Begin, D., Keller, V., Keller, N., Ledoux, M.-J., et al. (2009). Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template. Catalysis Today, 145(1–2), 76–84.

    Article  Google Scholar 

  40. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., et al. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197–200.

    Article  Google Scholar 

  41. Dikonimos, T., Giorgi, L., Giorgi, R., Lisi, N., Salernitano, E., & Rossi, R. (2007). DC plasma enhanced growth of oriented carbon nanowall films by HFCVD. Diamond and Related Materials, 16(4–7), 1240–1243.

    Article  Google Scholar 

  42. Hiramatsu, M., Shiji, K., Amano, H., & Hori, M. (2004). Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters, 84(23), 4708–4710.

    Article  Google Scholar 

  43. Jain, H. G., Karacuban, H., Krix, D., Becker, H.-W., Nienhaus, H., & Buck, V. (2011). Carbon nanowalls deposited by inductively coupled plasma enhanced chemical vapor deposition using aluminum acetylacetonate as precursor. Carbon, 49(15), 4987–4995.

    Article  Google Scholar 

  44. Luais, E., Boujtita, M., Gohier, A., Tailleur, A., Casimirius, S., Djouadi, M. A., et al. (2009). Carbon nanowalls as material for electrochemical transducers. Applied Physics Letters, 95(1), 014104.

    Article  Google Scholar 

  45. Malesevic, A., Vizireanu, S., Kemps, R., Vanhulsel, A., Van Haesendonck, C., & Dinescu, G. (2007). Combined growth of carbon nanotubes and carbon nanowalls by plasma-enhanced chemical vapor deposition. Carbon, 45(15), 2932–2937.

    Article  Google Scholar 

  46. Mori, T., Hiramatsu, M., Yamakawa, K., Takeda, K., & Hori, M. (2008). Fabrication of carbon nanowalls using electron beam excited plasma-enhanced chemical vapor deposition. Diamond and Related Materials, 17(7–10), 1513–1517.

    Article  Google Scholar 

  47. Sato, G., Morio, T., Kato, T., & Hatakeyama, R. (2006). Fast growth of carbon nanowalls from pure methane using helicon plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 45(6A), 5210–5212.

    Google Scholar 

  48. Shimabukuro, S., Hatakeyama, Y., Takeuchi, M., Itoh, T., & Nonomura, S. (2008). Effect of hydrogen dilution in preparation of carbon nanowall by hot-wire CVD. Thin Solid Films, 516(5), 710–713.

    Article  Google Scholar 

  49. Shin, S. C., Yoshimura, A., Matsuo, T., Mori, M., Tanimura, M., Ishihara, A., et al. (2011). Carbon nanowalls as platinum support for fuel cells. Journal of Applied Physics, 110(10), 104308.

    Article  Google Scholar 

  50. Takeuchi, W., Ura, M., Hiramatsu, M., Tokuda, Y., Kano, H., & Hori, M. (2008). Electrical conduction control of carbon nanowalls. Applied Physics Letters, 92(21), 213103.

    Article  Google Scholar 

  51. Wang, E. G., Guo, Z. G., Ma, J., Zhou, M. M., Pu, Y. K., Liu, S., et al. (2003). Optical emission spectroscopy study of the influence of nitrogen on carbon nanotube growth. Carbon, 41(9), 1827–1831.

    Article  Google Scholar 

  52. Wu, Y. H., Yang, B. J., Zong, B. Y., Sun, H., Shen, Z. X., & Feng, Y. P. (2004). Carbon nanowalls and related materials. Journal of Materials Chemistry, 14(4), 469–477.

    Article  Google Scholar 

  53. Yang, B. J., Wu, Y. H., Zong, B. Y., & Shen, Z. X. (2002). Electrochemical synthesis and characterization of magnetic nanoparticles on carbon nanowall templates. Nano Letters, 2(7), 751–754.

    Article  Google Scholar 

  54. Chuang, A. T. H., Boskovic, B. O., & Robertson, J. (2006). Freestanding carbon nanowalls by microwave plasma-enhanced chemical vapour deposition. Diamond and Related Materials, 15(4–8), 1103–1106.

    Article  Google Scholar 

  55. Eslami, P. A., Ghoranneviss, M., Moradi, S., Azar, P. A., Khorrami, S. A., & Laheghi, S. N. (2011). Growth of carbon nanowalls by thermal CVD on magnetron sputtered Fe thin film. Fullerenes, Nanotubes, and Carbon Nanostructures, 19(3), 237–249.

    Article  Google Scholar 

  56. Kondo, S., Hori, M., Yamakawa, K., Den, S., Kano, H., & Hiramatsu, M. (2008). Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. Journal of Vacuum Science and Technology B, 26(4), 1294–1300.

    Article  Google Scholar 

  57. Yu, K., Bo, Z., Lu, G., Mao, S., Cui, S., Zhu, Y., et al. (2011). Growth of carbon nanowalls at atmospheric pressure for one-step gas sensor fabrication. Nanoscale Research Letters, 6, 202.

    Article  Google Scholar 

  58. Zhang, C., Hu, J., Wang, X., Zhang, X., Toyoda, H., Nagatsu, M., et al. (2012). High performance of carbon nanowall supported Pt catalyst for methanol electro-oxidation. Carbon, 50(10), 3731–3738.

    Article  Google Scholar 

  59. Shimada, S., Teii, K., & Nakashima, M. (2010). Low threshold field emission from nitrogen-incorporated carbon nanowalls. Diamond and Related Materials, 19(7–9), 956–959.

    Article  Google Scholar 

  60. Shemabukuro, S., Hatakeyama, Y., Takeuchi, M., Itoh, T., & Nonomura, S. (2008). Preparation of carbon nanowall by hot-wire chemical vapor deposition and effects of substrate heating temperature and filament temperature. Japanese Journal of Applied Physics, 47(11), 8635–8640.

    Article  Google Scholar 

  61. Hojati-Talemi, P., & Simon, G. P. (2010). Preparation of graphene nanowalls by a simple microwave-based method. Carbon, 48(14), 3993–4000.

    Article  Google Scholar 

  62. Teii, K., Shimada, S., Nakashima, M., & Chuang, A. T. H. (2009). Synthesis and electrical characterization of n-type carbon nanowalls. Journal of Applied Physics, 106(8), 084303.

    Article  Google Scholar 

  63. Bo, Z., Yu, K., Lu, G., Wang, P., Mao, S., & Chen, J. (2011). Understanding growth of carbon nanowalls at atmospheric pressure using normal glow discharge plasma-enhanced chemical vapor deposition. Carbon, 49(6), 1849–1858.

    Article  Google Scholar 

  64. Zhao, X., Tian, H., Zhu, M., Tian, K., Wang, J. J., Kang, F., et al. (2009). Carbon nanosheets as the electrode material in supercapacitors. Journal of Power Sources, 194(2), 1208–1212.

    Article  Google Scholar 

  65. Wang, Z., Shoji, M., & Ogata, H. (2011). Carbon nanosheets by microwave plasma enhanced chemical vapor deposition in CH4-Ar system. Applied Surface Science, 257(21), 9082–9085.

    Article  Google Scholar 

  66. Tiwari, J. N., Tiwari, R. N., Singh, G., & Lin, K. L. (2011). Direct synthesis of vertically interconnected 3-D graphitic nanosheets on hemispherical carbon particles by microwave plasma CVD. Plasmonics, 6(1), 67–73.

    Article  Google Scholar 

  67. Zhu, M. Y., Outlaw, R. A., Bagge-Hansen, M., Chen, H. J., & Manos, D. M. (2011). Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H-2 plasma enhanced CVD. Carbon, 49(7), 2526–2531.

    Article  Google Scholar 

  68. Chen, M. Y., Yeh, C. M., Syu, J. S., Hwang, J., & Kou, C. S. (2007). Field emission from carbon nanosheets on pyramidal Si(100). Nanotechnology, 18(18), 185706.

    Article  Google Scholar 

  69. Wang, S., Wang, J., Miraldo, P., Zhu, M., Outlaw, R., Hou, K., et al. (2006). High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices. Applied Physics Letters, 89(18), 183103.

    Article  Google Scholar 

  70. Yu, K., Wang, P., Lu, G., Chen, K.-H., Bo, Z., & Chen, J. (2011). Patterning Vertically Oriented Graphene Sheets for Nanodevice Applications. Journal of Physical Chemistry Letters, 2(6), 537–542.

    Article  Google Scholar 

  71. Kim, H., Wen, Z., Yu, K., Mao, O., & Chen, J. (2012). Straightforward fabrication of a highly branched graphene nanosheet array for a Li-ion battery anode. Journal of Materials Chemistry, 22(31), 15514–15518.

    Article  Google Scholar 

  72. Shang, N. G., Papakonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., et al. (2008). Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes. Advanced Functional Materials, 18(21), 3506–3514.

    Article  Google Scholar 

  73. Shih, W.-C., Jeng, J.-M., Huang, C.-T., & Lo, J.-T. (2010). Fabrication of carbon nanoflakes by RF sputtering for field emission applications. Vacuum, 84(12), 1452–1456.

    Article  Google Scholar 

  74. Hung, T.-C., Chen, C.-F., & Whang, W.-T. (2009). Deposition of Carbon Nanowall Flowers on Two-Dimensional Sheet for Electrochemical Capacitor Application. Electrochemical and Solid State Letters, 12(6), K41–K44.

    Article  Google Scholar 

  75. Wang, J. J., Zhu, M. Y., Outlaw, R. A., Zhao, X., Manos, D. M., Holloway, B. C., et al. (2004). Free-standing subnanometer graphite sheets. Applied Physics Letters, 85(7), 1265–1267.

    Article  Google Scholar 

  76. Bo, Z., Yang, Y., Chen, J., Yu, K., Yan, J., & Cen, K. (2013). Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale, 5(12), 5180–5204.

    Article  Google Scholar 

  77. Bo, Z., Yu, K., Lu, G., Cui, S., Mao, S., & Chen, J. (2011). Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: lower power consumption and minimized ozone emission. Energy & Environmental Science, 4(7), 2525–2528.

    Article  Google Scholar 

  78. Yu, K., Wen, Z., Pu, H., Lu, G., Bo, Z., Kim, H., et al. (2013). Hierarchical vertically oriented graphene as a catalytic counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry A, 1(2), 188–193.

    Article  Google Scholar 

  79. Deng, J.-H., Zheng, R.-T., Zhao, Y., & Cheng, G.-A. (2012). Vapor-Solid Growth of Few-Layer Graphene Using Radio Frequency Sputtering Deposition and Its Application on Field Emission. ACS Nano, 6(5), 3727–3733.

    Article  Google Scholar 

  80. Yoo, J. J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B. G., Srivastava, A., et al. (2011). Ultrathin Planar Graphene Supercapacitors. Nano Letters, 11(4), 1423–1427.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J., Bo, Z., Lu, G. (2015). Introduction. In: Vertically-Oriented Graphene. Springer, Cham. https://doi.org/10.1007/978-3-319-15302-5_1

Download citation

Publish with us

Policies and ethics