Skip to main content

Two-Terminal Organic Memories with Metal or Semiconductor Nanoparticles

  • Chapter
Charge-Trapping Non-Volatile Memories
  • 1257 Accesses

Abstract

The rapid development of information technology has higher and higher demand for high-speed and high-density memory devices. In addition, flexible memories are required as the key units of flexible electronic systems that are regarded as the next-generation electronic systems. Two-terminal organic devices embedded with metal or semiconductor nanoparticles can exhibit resistive switches and stability in different resistance states. This electrical behavior renders them important application as memories. These organic memory devices can have high density and high mechanical flexibility, and the fabrication cost for them can be quite low. Several types of organic memory devices have been demonstrated. The first type of the devices has a triple-layer structure with a layer of metal nanoparticles sandwiched between two organic layers. The other types of the organic memories have a single-layer structure with metal or semiconductor nanoparticles or nanoparticle/polymer composites embedded in the single polymer layer. Several mechanisms have been proposed for the resistive switches, including the electric-field induced charge transfer between nanoparticles and another component, the charge trapping on nanoparticles, and electric-field induced polarization. In addition, a new type of organic memories was recently demonstrated, which explored the charge transfer between metal nanoparticles and bulk metal electrode. The organic memories can potentially solve technique bottlenecks in the present leading memory devices. Apart from the application as memories, organic memories can be used for other electronic systems. For example, the combination of organic memories with light-emitting diodes can give rise to electronic papers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barman S, Deng F, McCreery RL (2008) Conducting Polymer Memory Devices Based on Dynamic Doping. J Am Chem Soc 130:11073

    Google Scholar 

  • Bozano LD, Kean BW, Deline VR, Salem LR, Scott JC (2004) Mechanism for Bistability in Organic Memory Elements. Appl Phys Lett 84:607

    Google Scholar 

  • Bozano LD, Kean BW, Beinhoff M, Carter KR, Rice PM, Scott JC (2005) Organic Materials and Thin-Film Structures for Cross-Point Memory Cells Based on Trapping in Metallic Nanoparticle. Adv Funct Mater 15:1933

    Google Scholar 

  • Burr GW, Kurdi BN, Scott JC, Lam CH, Gopalakrishnan K, Shenoy RS (2008) Overview of Candidate Device Technologies for Storage-Class Memory. IBM J Res Dev 52:449

    Google Scholar 

  • Chen J, Ma D (2005) Single-Layer Organic Memory Devices Based on N,N’-Di(naphthalene-l-yl)-N,N’-Diphenyl-Benzidine. Appl Phys Lett 87:023505

    Google Scholar 

  • Chu CW, Ouyang J, Yang Y (2005) Organic Donor–Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices. Adv Mater 17:1440

    Google Scholar 

  • Daniel MC, Astruc D (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology Chem Rev 104:293

    Google Scholar 

  • Das BC, Pal AJ (2008) Memory Applications and Electrical Bistability of Semiconducting Nanoparticles: Do the Phenomena Depend on Bandgap?. Small 4:542

    Google Scholar 

  • Das DC, Pal AJ (2008b) Core−Shell Hybrid Nanoparticles with Functionalized Quantum Dots and Ionic Dyes: Growth, Monolayer Formation, and Electrical Bistability. ACS Nano 2:1930

    Google Scholar 

  • de Boer EA, Bell LD, Brongersma ML, Atwater HA, Ostraat ML, Flagan RC (2001) Charging of Single Si Nanocrystals by Atomic Force Microscopy. Appl Phys Lett 78:3133

    Google Scholar 

  • Dearnaley G, Morgan DV, Stoneham AM (1970) A Model for Filament Growth and Switching in Amorphous Oxide Films. J Noncryst Solids 4:593

    Google Scholar 

  • Green JE, Choi JW, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shin YS, Tseng HR, Stoddart JF, Heath JR (2007) A 160-Kilobit Molecular Electronic Memory Patterned at 10^11 Bits per Square Centimetre. Nature 445:414

    Google Scholar 

  • Hamann HF, O’Boyle M, Martin YC, Rooks M, Wickramasinghe HK (2006) Ultra-High-Density Phase-Change Storage and Memory. Nat Mater 5:383

    Google Scholar 

  • Huang J, Kaner RB (2004) A General Chemical Route to Polyaniline Nanofibers. J Am Chem Soc 126:851

    Google Scholar 

  • Huang J, Virji S, Weiller BH, Kaner RB (2004) Nanostructured Polyaniline Sensors. Chem Eur J 10:1314

    Google Scholar 

  • Joo WJ, Choi TL, Lee KH, Chung Y (2007) Study on Threshold Behavior of Operation Voltage in Metal Filament-Based Polymer Memory. J Phys Chem B 111:7756

    Google Scholar 

  • Jung JH, Kim JH, Kim TW, Song MS, Kim YH, Lin S (2006) Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer. Appl Phys Lett 89:122110

    Google Scholar 

  • Kang SH, Crisp T, Kymissis I, Bulovic V (2004) Memory effect from charge trapping in layered organic structures. Appl Phys Lett 85:4666

    Google Scholar 

  • Kim CK, Joo WJ, Kim HJ, Song ES, Kim J, Lee S, Park C, Kim C (2008) Gold nanoparticles passivated with (-conjugated dendrons and their electrical bistability. Synth Met 158:359

    Google Scholar 

  • Kim TH, Jang EY, Lee NJ, Choi DJ, Lee KJ, Jang JT, Choi JS, Moon SH, Cheon J (2009) Nanoparticle assemblies as memristors. Nano Lett 9:2229

    Google Scholar 

  • Kim WT, Jung JH, Kim TW, Son DI (2010) Current bistability and carrier transport mechanisms of organic bistable devices based on hybrid Ag nanoparticle-polymethyl methacrylate polymer nanocomposites. Appl Phys Lett 96:253301

    Google Scholar 

  • Koeppe R, Bartu P, Bauer S, Sariciftci NS (2009) Light- and Touch-Point Localization using Flexible Large Area Organic Photodiodes and Elastomer Waveguides. Adv Mater 21:3510

    Google Scholar 

  • Li F, Son DI, Ham JH, Kim BJ, Jung JH, Kim TW (2007a) Memory effect of nonvolatile bistable devices based on CdSe/ZnS nanoparticles sandwiched between C60 layers. Appl Phys Lett 91:162109

    Google Scholar 

  • Li F, Son DI, Seo SM, Cha HM, Kim HJ, Kim BJ, Jung JH, Kim TW (2007b) Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer. Appl Phys Lett 91:122111

    Google Scholar 

  • Li F, Son DI, Cho SH, Kim TW (2009) Electrical bistabilities and operating mechanisms of memory devices fabricated utilizing ZnO quantum dot-multi-walled carbon nanotube nanocomposites. Nanotechnology 20:185202

    Google Scholar 

  • Lin HT, Pei Z, Chan YJ (2007) Carrier transport mechanism in a nanoparticle-incorporated organic bistable memory device. IEEE Electron Device Lett 28:569

    Google Scholar 

  • Lin HT, Pei Z, Chen JR, Chan YJ (2009) A UV-Erasable Stacked Diode-Switch Organic Nonvolatile Bistable Memory on Plastic Substrates. IEEE Electron Device Lett 30:18

    Google Scholar 

  • Ling QD, Lim SL, Song Y, Zhu CX, Chan DSH, Kang ET, Neoh KG (2007) Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly(n-vinylcarbazole) with covalently bonded C60. Langmuir 23:312

    Google Scholar 

  • Ma L, Liu J, Pyo S, Yang Y (2002a) Organic bistable light-emitting devices. Appl Phys Lett 80:362

    Google Scholar 

  • Ma LP, Liu J, Yang Y (2002b) Organic electrical bistable devices and rewritable memory cells. Appl Phys Lett 80:2997

    Google Scholar 

  • Ma L, Pyo S, Ouyang J, Xu Q, Yang Y (2003) Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. Appl Phys Lett 82:1419

    Google Scholar 

  • Mukhejee B, Mukhejee M (2009) Nonvolatile memory device based on Ag nanoparticle: characteristics improvement. Appl Phys Lett 94:173510

    Google Scholar 

  • Ouyang J (2013a) Polymer:nanoparticle memory devices with electrode-sensitive bipolar resistive switches by exploring the electrical contact between a bulk metal and metal nanoparticles. Org Electron 14:665

    Google Scholar 

  • Ouyang J (2013b) Materials effects on the electrode-sensitive bipolar resistive switches of polymer:gold nanoparticle memory devices. Org Electron 14:1458

    Google Scholar 

  • Ouyang J (2013c) Electron transfer at the contact between Al electrode and gold nanoparticles of polymer:nanoparticle resistive switching devices studied by ac impedance spectroscopy. Appl Phys Lett 103:233508

    Google Scholar 

  • Ouyang J (2014) Temperature-Sensitive Asymmetrical Bipolar Resistive Switches of Polymer:Nanoparticle Memory Devices. Org Electron 15:1913

    Google Scholar 

  • Ouyang J, Yang Y (2006) Conducting polymer as transparent electric glue. Adv Mater 18:2141

    Google Scholar 

  • Ouyang J, Yang Y (2010) Polymer:metal nanoparticle devices with electrode-sensitive bipolar resistive switchings and their application as nonvolatile memory devices. Appl Phys Lett 96:063506

    Google Scholar 

  • Ouyang J, Guo TF, Yang Y, Higuchi H, Yoshioka M, Nagatsuka T (2002) High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process. Adv Mater 14:915

    Google Scholar 

  • Ouyang J, Chu CW, Szmanda C, Ma L, Yang Y (2004) Programmable polymer thin film and nonvolatile memory device. Nat Mater 3:918

    Google Scholar 

  • Ouyang J, Chu CW, Tseng RJH, Prakash A, Yang Y (2005a) Organic memory device fabricated through a solution processing. Proc IEEE 93:1287

    Google Scholar 

  • Ouyang J, Chu CW, Sievers D, Yang Y (2005b) Electric-field induced charge transfer between Au nanoparticle and capped 2-naphthalenethiol. Appl Phys Lett 86:123507

    Google Scholar 

  • Park JG, Nam WS, Seo SH, Kim YG, Oh YH, Lee GS, Paik UG (2009) Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier. Nano Lett 9:1713

    Google Scholar 

  • Raous S, Burr GW, Breitwisch MJ, Rettner CT, Chen YC, Shelby RM, Salinga M, Jrebs D, Chen SH, Lung HL, Lam CH (2008) Phase-change random access memory: a scalable technology. IBM Res Dev 52:465

    Google Scholar 

  • Reddy VS, Karak S, Dhar A (2009) Multilevel conductance switching in organic memory devices based on AlQ3 and Al/Al2O3 core-shell nanoparticles. Appl Phys Lett 94:173304

    Google Scholar 

  • Rozenberg MJ, Inoue JH, Sánchez J (2004) Nonvolatile memory with multilevel switching: a basic model. Phys Rev Lett 92:178302

    Google Scholar 

  • Sahu S, Majee SK, Pal AJ (2007) Layer-by-layer assembly of capped CdSe nanoparticles: electrical bistability and memory phenomenon. Appl Phys Lett 91:143108

    Google Scholar 

  • Scott JC, Bozano LD (2007) Nonvolatile memory elements based on organic materials. Adv Mater 19:1452

    Google Scholar 

  • Simmons JG, Verderber RR (1967) New conduction and reversible memory phenomena in thin insulating films. Proc R Soc A 301:77

    Google Scholar 

  • Son DI, Kim JH, Park DH, Choi WK, Li F, Ham JH, Kim TW (2008) Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer. Nanotechnology 19:055204

    Google Scholar 

  • Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80

    Google Scholar 

  • Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389

    Google Scholar 

  • Tang W, Shi HZ, Xu G, Ong BS, Popovic ZD, Deng JC, Zhao J, Rao GH (2005) Memory effect and negative differential resistance by electrode-induced two-dimensional single-electron tunneling in molecular and organic electronic devices. Adv Mater 17:2307

    Google Scholar 

  • Tondelier D, Lmimouni K, Vuillaume D, Fery C, Haas G (2004) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Metal/organic/metal bistable memory devices. Appl Phys Lett 85:5763

    Google Scholar 

  • Tseng R, Huang J, Ouyang J, Kaner RB, Yang Y (2005) Gold nanoparticle/polyaniline nanofiber memory. Nano Lett 5:1077

    Google Scholar 

  • Tseng RJ, Ouyang J, Chu CW, Huang J, Yang Y (2006a) Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device. Appl Phys Lett 88:123506

    Google Scholar 

  • Tseng RJ, Tsai C, Ma L, Ouyang J, Ozkan CC, Yang Y (2006b) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nanotechnol 1:72

    Google Scholar 

  • Tsoukalas D, Dimitrakis P, Kolliopoulou S, Normand P (2005) Recent advances in nanoparticle memories. Mater Sci Eng B 124:93

    Google Scholar 

  • Verbakel F, Meskers SCJ, Janssen RAJ (2006) Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material. Appl Phys Lett 89:102103

    Google Scholar 

  • Wang W, Lee T, Reed MA (2003) Mechanism of electron conduction in self-assembled alkanethiol monolayer devices. Phys Rev B 68:035416

    Google Scholar 

  • Wu J, Ma L, Yang Y (2004) Single-band Hubbard model for the transport properties in bistable organic/metal nanoparticle/organic devices. Phys Rev B 69:115321

    Google Scholar 

  • Xia Y, Zhang H, Ouyang J (2010) Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. J Mater Chem 20:9740

    Google Scholar 

  • Yang Y, Ouyang J, Ma L, Chu CW, Tseng RJ (2006) Electrical switching and bistability in organic/polymeric thin films and memory devices. Adv Funct Mater 16:1001

    Google Scholar 

  • Yun DY, Kwak JK, Jung JH, Kim TW, Son DI (2009) Electrical bistabilities and carrier transport mechanisms of write-once-read-many-times memory devices fabricated utilizing ZnO nanoparticles embedded in a polystyrene layer. Appl Phys Lett 95:143301

    Google Scholar 

  • Zakhidov AA, Jung B, Slinker JD, Abruña HD, Malliaras GG (2010) High performance printed organic transistors using a novel scanned thermal annealing technology. Org Electron 11:150

    Google Scholar 

  • Zirkl M, Haase A, Fian A, Schön H, Sommer C, Jakopic G, Leising G, Stadlober B, Graz I, Gaar N, Schwödiauer R, Gogonea SB, Bauer S (2007) Low-Voltage Organic Thin-Film Transistors with High-k Nanocomposite Gate Dielectrics for Flexible Electronics and Optothermal Sensors. Adv Mater 19:2241

    Google Scholar 

Download references

Acknowledgement

The author thanks the Ministry of Education in Singapore for financial support on this research work (Project No: R-284-000-113-112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ouyang, J. (2015). Two-Terminal Organic Memories with Metal or Semiconductor Nanoparticles. In: Dimitrakis, P. (eds) Charge-Trapping Non-Volatile Memories. Springer, Cham. https://doi.org/10.1007/978-3-319-15290-5_6

Download citation

Publish with us

Policies and ethics