Skip to main content

Abstract

A matrix computational problem is a function which maps a set of data (usually in the form of a collection of matrices) into a matrix space whose elements are the desired solutions. If a particular data is perturbed then the corresponding solution is also perturbed. The goal of the norm-wise perturbation analysis is to estimate the norm of the perturbation in the solution as a function of the norms of the perturbations in the data. In turn, in the component-wise perturbation analysis the modules of the elements of the solution are estimated as functions of the modules of the perturbations in the data.

The perturbation analysis can be local and nonlocal. In the local analysis it is supposed that the perturbations in the data are asymptotically small and a local bound for the perturbation in the solution is constructed which is valid for first order (small) perturbations. A disadvantage of the local analysis is that normally it does not have a priori measure on how ‘small’ the data perturbations must be in order to guarantee the results from the local estimates being correct. A desirable property of the local bounds is formulated as follows: a perturbation bound is asymptotically exact when for some perturbations it is arbitrarily close to the actual perturbed quantity.

On the other hand the nonlocal perturbation analysis produces perturbation estimates which are rigorously valid in a certain set of data perturbations. The price of this advantage is that the nonlocal perturbation bounds may be too pessimistic in certain cases and/or the domain of validity of these bounds may be relatively small. However, a desirable property of the nonlocal bounds is that within first order perturbations they coincide with the improved local bounds.

In this chapter we consider the basic methods for perturbation analysis of matrix algebraic equations and unitary (orthogonal in particular) matrix decompositions.

The nonlocal perturbation analysis of matrix equations includes several steps: (a) reformulation of the perturbed problem as an equivalent operator equation with respect to the perturbation in the solution; (b) construction of a Lyapunov majorant for the corresponding operator; (c) application of fixed point principles in order to prove that the perturbed equation has a solution; (d) estimation of the solution of the associated majorant equation. The latter estimate gives the desired nonlocal perturbation bound.

The nonlocal perturbation analysis of unitary matrix decompositions is based on a systematic use of the method of splitting operators and vector Lyapunov majorants. In this way nonlocal perturbation bounds are derived for the basic unitary decompositions of matrices (QR decomposition and Schur decomposition in particular) and for important problems in the theory of linear time-invariant control systems: transformation into unitary canonical form and synthesis of closed-loop systems with desired equivalent form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MATLAB®; is a trademark of MathWorks, Inc.

References

  1. Ammar, G., Mehrmann, V.: On Hamiltonian and symplectic Hessenberg forms. Linear Algebra Appl. 149, 55–72 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angelova, V.: Perturbation analysis of linear multivariable control systems. PhD thesis, Bulgarian Academy of Sciences, Sofia (1994)

    Google Scholar 

  3. Angelova, V.: Perturbation analysis for the complex linear matrix equation \(\alpha X +\sigma A^{\mathrm{H}}XA = I,\) α, σ = ±1. C. R. Acad. Bulg. Sci. Tech. Theor. des Syst. 56(12), 47–52 (2003). ISSN:1310-1331

    Google Scholar 

  4. Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators. Birkhäuser Verlag, Basel (1985). ISBN:3764316640

    MATH  Google Scholar 

  5. Benner, P.: Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems. Logos-Verlag, Berlin (1997). ISBN:9783931216702

    MATH  Google Scholar 

  6. Benner, P., Byers, R., Mehrmann, V., Xu, H.: Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl. 24, 165–190 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benner, P., Kressner, D., Mehrmann, V.: Skew-Hamiltonian and Hamiltonian eigenvalue problems: theory, algorithms, and applications. In: Drmac, Z., Marusic, M., Tutek, Z. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, Brijuni, 23–27 June 2003, pp. 3–39. Springer, Berlin (2005). ISBN:1-4020-3196-3

    Chapter  Google Scholar 

  8. Benner, P., Laub, A.J., Mehrmann, V.: Benchmarks for the numerical solution of algebraic Riccati equations. IEEE Control Syst. Mag. 17, 18–28 (1997)

    Article  Google Scholar 

  9. Benner, P., Mehrmann, V., Xu, H.: A note on the numerical solution of complex Hamiltonian and skew-Hamiltonian eigenvalue problems. Electron. Trans. Numer. Anal. 8, 115–126 (1999)

    MATH  MathSciNet  Google Scholar 

  10. Benner, P., Mehrmann, V., Xu, H.: Perturbation analysis of the eigenvalue problem of a formal product of matrices. BIT 42, 1–43 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bhatia, R.: Matrix factorizations and their perturbations. Linear Algebra Appl. 197–198, 245–276 (1994)

    Article  MathSciNet  Google Scholar 

  12. Bora, S., Mehrmann, V.: Linear perturbation theory for structured matrix pencils arising in control theory. SIAM J. Matrix Anal. Appl. 28, 148–169 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Demmel, J.: On condition numbers and the distance to the nearest ill-posed problem. Numer. Math. 51, 251–289 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chang, X., Paige, C., Stewart, G.: Perturbation analysis for the QR factorization. SIAM J. Matrix Anal. Appl. 18, 775–791 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, X., Li, W., Ng, M.: Perturbation analysis for antitriangular Schur decomposition. SIAM J. Matrix Anal. Appl. 33, 325–335 (2012)

    Article  MathSciNet  Google Scholar 

  16. Dontchev, A.: Perturbations, Approximations and Sensitivity Analysis of Optimal Control Systems. Springer, Berlin (1983). ISBN:0387124632

    MATH  Google Scholar 

  17. Eslami, M.: Theory of Sensitivity in Dynamic Systems. Springer, Berlin (1994). ISBN:0387547614

    Book  Google Scholar 

  18. Gahinet, P.: Perturbational and topological aspects of sensitivity in control theory. PhD thesis, University of California at Santa Barbara, Santa Barbara (1989)

    Google Scholar 

  19. Gahinet, P., Laub, A.: Computable bounds for the sensitivity of the algebraic Riccati equation. SIAM J. Control Optim. 28, 1461–1480 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gahinet, P., Laub, A., Kenney, C., Hewer, G.: Sensitivity of the algebraic Riccati equation. IEEE Trans. Autom. Control 35, 1209–1217 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gautschi, W.: On the condition of algebraic equations. Numer. Math. 21, 405–424 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gohberg, I., Koltracht, I.: Mixed, componentwise and structural condition numbers. SIAM J. Matrix Anal. Appl. 14, 688–704 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996). ISBN:0801854148

    MATH  Google Scholar 

  24. Grebenikov, E., Ryabov, Y.: Constructive Methods for Analysis of Nonlinear Systems (in Russian). Nauka, Moscow (1979)

    Google Scholar 

  25. Gu, D., Petkov, P., Konstantinov, M., Mehrmann, V.: Condition and error estimates in the solution of Lyapunov and Riccati equations. SLICOT working note 2000-1, Department of Electrical Engineering, University of Leuven (2000). http://www.icm.tu-bs.de/NICONET/

  26. Hewer, G., Kenney, C.: The sensitivity of the stable Lyapunov equation. SIAM J. Control Optim. 26, 321–344 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Higham, N.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002). ISBN:0898715210

    Book  MATH  Google Scholar 

  28. Higham, N., Konstantinov, M., Merhmann, V., Petkov, P.: The sensitivity of computational control problems. IEEE Control Syst. Mag. 24, 28–43 (2004)

    Article  Google Scholar 

  29. IEEE: IEEE Standard for Floating-Point Arithmetic 754–2008. IEEE, New York (2008). ISBN:9780738157535

    Google Scholar 

  30. Kantorovich, L.: Principle of majorants and Newton’s method (in Russian). Proc. Acad. Sci. USSR 76, 17–20 (1951)

    Google Scholar 

  31. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980) (Reprint 1995). ISBN:354058661X

    MATH  Google Scholar 

  32. Kawelke, J.: Perturbation and error analysis considerations in robust control. PhD thesis, University of Leicester, Leicester (1997)

    Google Scholar 

  33. Kenney, C., Hewer, G.: The sensitivity of the algebraic and differential Riccati equations. SIAM J. Control Optim. 28, 50–69 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kenney, C., Laub, A.: Condition estimates for matrix functions. SIAM J. Matrix Anal. Appl. 10, 191–209 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  35. Konstantinov, M., Angelova, V.: Sensitivity analysis of the differential matrix Riccati equation based on the associated linear differential system. Adv. Comput. Math. 7, 295–301 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Konstantinov, M., Angelova, V., Petkov, P., Gu, D., Tsachouridis, V.: Perturbation analysis of coupled matrix Riccati equations. Linear Algebra Appl. 359, 197–218 (2002)

    Article  MathSciNet  Google Scholar 

  37. Konstantinov, M., Christov, N., Petkov, P.: Perturbation analysis of linear control problems. Prepr. 10th IFAC Congress 9, 16–21, Munich (1987)

    Google Scholar 

  38. Konstantinov, M., Gu, D., Merhmann, V., Petkov, P.: Perturbation Theory for Matrix Equations. North-Holland, Amsterdam (2003). ISBN:0444513159

    MATH  Google Scholar 

  39. Konstantinov, M., Mehrmann, V., Petkov, P.: On properties of Sylvester and Lyapunov operators. Linear Algebra Appl. 32, 35–71 (2000)

    Article  MathSciNet  Google Scholar 

  40. Konstantinov, M., Merhmann, V., Petkov, P.: Perturbation analysis of Hamiltonian Schur and block-Schur forms. SIAM J. Matrix Anal. Appl. 23, 387–424 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  41. Konstantinov, M., Mehrmann, V., Petkov, P., Gu, D.: A general framework for the perturbation theory of matrix equations. Prepr. 760-02, Institute for Mathematics, Technical University of Berlin, Berlin (2003)

    Google Scholar 

  42. Konstantinov, M., Pelova, G.: Sensitivity of the solutions to differential matrix Riccati equations. IEEE Trans. Autom. Control 36, 213–215 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  43. Konstantinov, M., Petkov, P.: A note on Perturbation theory for algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 21, 327 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  44. Konstantinov, M., Petkov, P.: The method of splitting operators and Lyapunov majorants in perturbation linear algebra and control. Numer. Func. Anal. Opt. 23, 529–572 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  45. Konstantinov, M., Petkov, P.: Perturbation analysis in linear algebra and control theory (in Bulgarian). Stud. BIAR Math. Sci. 6, Sofia (2003). ISBN:9549526186

    Google Scholar 

  46. Konstantinov, M., Petkov, P.: Perturbation methods in linear algebra and control. Appl. Comput. Math. 7, 141–161 (2008)

    MATH  MathSciNet  Google Scholar 

  47. Konstantinov, M., Petkov, P.: Lyapunov majorants for perturbation analysis of matrix equations. In: Proceedings of 38-th Spring Conference on UBM, Borovetz, pp. 70–80 (2009). ISSN:13133330

    Google Scholar 

  48. Konstantinov, M., Petkov, P., Christov, N.: Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups. Kybernetika 17, 413–421 (1981)

    MATH  MathSciNet  Google Scholar 

  49. Konstantinov, M., Petkov, P., Christov, N.: Perturbation analysis of the continuous and discrete matrix Riccati equations. In: Proceedings of 1986 American Control Conference, Seattle, pp. 636–639 (1986)

    Google Scholar 

  50. Konstantinov, M., Petkov, P., Christov, N.: Perturbation analysis of matrix quadratic equations. SIAM J. Sci. Stat. Comput. 11, 1159–1163 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  51. Konstantinov, M., Petkov, P., Christov, N.: Perturbation analysis of the discrete matrix Riccati equation. Kybernetika 29, 18–29 (1993)

    MATH  MathSciNet  Google Scholar 

  52. Konstantinov, M., Petkov, P., Christov, N.: Nonlocal perturbation analysis of the Schur system of a matrix. SIAM J. Matrix Anal. Appl. 15, 383–392 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  53. Konstantinov, M., Petkov, P., Christov, N.: Sensitivity analysis of the feedback synthesis problem. IEEE Trans. Autom. Control 42, 568–573 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  54. Konstantinov, M., Petkov, P., Christov, N.: New results in the perturbation analysis of matrix algebraic equations. Appl. Comput. Math. 9, 153–161 (2010)

    MATH  MathSciNet  Google Scholar 

  55. Konstantinov, M., Petkov, P., Gu, G.: Improved perturbation bounds for general quadratic matrix equations. Numer. Func. Anal. Opt. 20, 717–736 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  56. Konstantinov, M., Petkov, P., Gu, D., Mehrmann, V.: Sensitivity of general Lyapunov equations. Report 98-15, Department of Engineering, Leicester University (1998)

    Google Scholar 

  57. Konstantinov, M., Petkov, P., Gu, D., Postlethwaite, I.: Perturbation analysis of orthogonal canonical forms. Technical report 95-4, Department of Engineering, Leicester University, Leicester (1995)

    Google Scholar 

  58. Konstantinov, M., Petkov, P., Gu, D., Postlethwaite, I.: Perturbation analysis of orthogonal canonical forms. Linear Algebra Appl. 251, 267–291 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  59. Konstantinov, M., Petkov, P., Kawelke, J., Gu, D., Postlethwaite, I.: Perturbation analysis of the H control problems. In: Proceedings of 2nd Asian Control Conference, Seoul, pp. 427–430 (1997)

    Google Scholar 

  60. Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Oxford University Press, Oxford (1995). ISBN:0198537956

    Google Scholar 

  61. Laub, A., Linnemann, A.: Hessenberg and Hessenberg/triangular forms in linear system theory. Int. J. Control 44, 1523–1547 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  62. Laub, A., Meyer, K.: Canonical forms for symplectic and Hamiltonian matrices. Celest. Mech. 9, 213–238 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  63. Lika, D., Ryabov, Y.: Iterative Methods and Lyapunov Majorant Equations in Nonlinear Oscillation Theory (in Russian). Shtiinca, Kishinev (1974)

    Google Scholar 

  64. Lin, W., Mehrmann., V., Xu, H.: Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra Appl. 302–303, 469–533 (1999)

    Google Scholar 

  65. Mackey, D., Mackey, N., Mehl, C., Mehrmann, V.: Numerical methods for palindromic eigenvalue problems: computing the anti-triangular Schur form. Numer. Linear Algebra 16, 63–86 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  66. Mehrmann, V.: The Autonomous Linear Quadratic Control Problem. Lecture Notes in Control and Information Sciences, vol. 163. Springer, Heidelberg (1991). ISBN:3540541705

    Google Scholar 

  67. Mehrmann, V.: Numerical methods for eigenvalue and control problems. In: Blowey, J.F., Craig, A.W., Shardlow, T. (eds.) Frontiers in Numerical Analysis, pp. 303–349. Springer, Berlin (2003). ISBN:978-3-540-44319-3

    Chapter  Google Scholar 

  68. Mehrmann, V., Xu, H.: An analysis of the pole placement problem. I. The single-input case. Electron. Trans. Numer. Anal. 4, 89–105 (1996)

    MATH  MathSciNet  Google Scholar 

  69. Mehrmann, V., Xu, H.: An analysis of the pole placement problem. II. The multi-input case. Electron. Trans. Numer. Anal. 5, 77–97 (1997)

    MATH  MathSciNet  Google Scholar 

  70. Mehrmann, V., Xu, H.: Choosing poles so that the single-input pole placement problem is well conditioned. SIAM J. Matrix Anal. Appl. 19, 664–681 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  71. Mehrmann, V., Xu, H.: Numerical methods in control. J. Comput. Appl. Math. 123, 371–394 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  72. Mehrmann, V., Xu, H.: Perturbation of purely imaginary eigenvalues of Hamiltonian matrices under structured perturbations. Electron. J. Linear Algebra 17, 234–257 (2008)

    MATH  MathSciNet  Google Scholar 

  73. Petkov, P.: Perturbation bounds for orthogonal canonical forms and numerical stability analysis. IEEE Trans. Autom. Control 38, 639–643 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  74. Petkov, P., Christov, N., Konstantinov, M.: A new approach to the perturbation analysis of linear control problems. Prepr. 11th IFAC Congress, Tallin, pp. 311–316 (1990)

    Google Scholar 

  75. Petkov, P., Christov, N., Konstantinov, M.: Computational Methods for Linear Control Systems. Prentice Hall, Hemel Hempstead (1991). ISBN:0131618032

    MATH  Google Scholar 

  76. Petkov, P., Konstantinov, M., Gu, D., Mehrmann, V.: Numerical solution of matrix Riccati equations – a comparison of six solvers. NICONET report 99–10, Department of Electrical Engineering, University of Leuven (1999). http://www.icm.tu-bs.de/NICONET/

  77. Petkov, P., Konstantinov, M., Gu, D., Postlethwaite, I.: Optimal eigenstructure assignment of linear systems. In: Proceedings of 13th IFAC Congress, San Francisco, vol. C, pp. 109–114 (1996)

    Google Scholar 

  78. Petkov, P., Konstantinov, M., Mehrmann, V.: DGRSVX and DMSRIC: Fortran 77 subroutines for solving continuous-time matrix algebraic Riccati equations with condition and accuracy estimates. Prepr. SFB393/98-16, Fak. für Math., Technische Universität Chemnitz (1998)

    Google Scholar 

  79. Popchev, I., Angelova, V.: Residual bound of the matrix equation \(X + A^{\mathrm{H}}X^{-1}A + B^{\mathrm{H}}X^{-1}B = I\), C.R. Acad. Bulg. Sci. 66(10), 1379–1384 (2013). ISSN:1310–1331

    Google Scholar 

  80. Rice, J.: A theory of condition. SIAM J. Numer. Anal. 3, 287–310 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  81. Rohn, J.: New condition numbers for matrices and linear systems. Computing 41, 167–169 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  82. Stewart, G.: Error bounds for approximate invariant subspaces of closed linear operators. SIAM J. Numer. Anal. 8, 796–808 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  83. Stewart, G.: Error and perturbation bounds for subspaces associated with certain eigenvalue problems. SIAM Rev. 15, 727–764 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  84. Stewart, G.: Perturbation bounds for the QR factorization of a matrix. SIAM J. Numer. Anal. 14, 509–518 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  85. Stewart, G.: On the perturbation of LU, Cholesky and QR factorizations. SIAM J. Matrix Anal. Appl. 14, 1141–1145 (1993)

    Article  MATH  Google Scholar 

  86. Stewart, G., Sun, J.: Matrix Perturbation Theory. Academic, New York (1990). ISBN:0126702306

    MATH  Google Scholar 

  87. Sun, J.: Componentwise perturbation bounds for some matrix decompositions. BIT 32, 702–714 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  88. Sun, J.: On perturbation bounds for the QR factorization. Linear Algebra Appl. 215, 95–111 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  89. Sun, J.: Perturbation bounds for the generalized Schur decomposition. SIAM J. Matrix Anal. Appl. 16, 1328–1340 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  90. Sun, J.: Perturbation analysis of system Hessenberg and Hessenberg-triangular forms. Linear Algebra Appl. 241, 811–849 (1996)

    Article  MathSciNet  Google Scholar 

  91. Sun, J.: Perturbation analysis of the pole assignment problem. SIAM J. Matrix Anal. A. 17, 313–331 (1996)

    Article  MATH  Google Scholar 

  92. Sun, J.: Perturbation theory for algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 19, 39–65 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  93. Sun, J.: Sensitivity analysis of the discrete-time algebraic Riccati equation. Linear Algebra Appl. 275–276, 595–615 (1998)

    Article  Google Scholar 

  94. Vulchanov, N., Konstantinov, M.: Modern Mathematical Methods for Computer Calculations, Part 1 (2nd edn., in Bulgarian). Studies of BIAR in Math. Sci., 1, Demetra Publishing House, Sofia (2005). ISBN:9548949016

    Google Scholar 

  95. Weinmann, A.: Uncertain Models and Robust Control. Springer, Wien (1991). ISBN:3211822992

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank an anonymous referee for the helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petko H. Petkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Konstantinov, M.M., Petkov, P.H. (2015). Perturbation Analysis of Matrix Equations and Decompositions. In: Benner, P., Bollhöfer, M., Kressner, D., Mehl, C., Stykel, T. (eds) Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-15260-8_7

Download citation

Publish with us

Policies and ethics