Breaking Van Loan’s Curse: A Quest forStructure-Preserving Algorithms for Dense Structured Eigenvalue Problems

Abstract

In 1981 Paige and Van Loan (Linear Algebra Appl 41:11–32, 1981) posed the open question to derive an \(\mathcal{O}(n^{3})\) numerically strongly backwards stable method to compute the real Hamiltonian Schur form of a Hamiltonian matrix. This problem is known as Van Loan’s curse. This chapter summarizes Volker Mehrmann’s work on dense structured eigenvalue problems, in particular, on Hamiltonian and symplectic eigenproblems. In the course of about 35 years working on and off on these problems the curse has been lifted by him and his co-workers. In particular, his work on SR methods and on URV-based methods for dense Hamiltonian and symplectic matrices and matrix pencils is reviewed. Moreover, his work on structure-preserving methods for other structured eigenproblems is discussed.

References

  1. 1.
    Ammar, G., Mehrmann, V.: On Hamiltonian and symplectic Hessenberg forms. Linear Algebra Appl. 149, 55–72 (1991)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Banse, G.: Eigenwertverfahren für symplektische Matrizen zur Lösung zeitdiskreter optimaler Steuerungsprobleme. Z. Angew. Math. Mech. 75(Suppl. 2), 615–616 (1995)MathSciNetGoogle Scholar
  3. 3.
    Banse, G.: Symplektische Eigenwertverfahren zur Lösung zeitdiskreter optimaler Steuerungsprobleme. PhD thesis, Fachbereich 3 – Mathematik und Informatik, Universität Bremen, Bremen (1995)Google Scholar
  4. 4.
    Banse, G.: Condensed forms for symplectic matrices and symplectic pencils in optimal control. Z. Angew. Math. Mech. 76(Suppl. 3), 375–376 (1996)MATHGoogle Scholar
  5. 5.
    Banse, G., Bunse-Gerstner, A.: A condensed form for the solution of the symplectic eigenvalue problem. In: Helmke, U., Menniken, R., Sauer, J. (eds.) Systems and Networks: Mathematical Theory and Applications, pp. 613–616. Akademie Verlag, Berlin (1994)Google Scholar
  6. 6.
    Benner, P., Faßbender, H.: An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl. 263, 75–111 (1997)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Benner, P., Faßbender, H.: The symplectic eigenvalue problem, the butterfly form, the SR algorithm, and the Lanczos method. Linear Algebra Appl. 275/276, 19–47 (1998)Google Scholar
  8. 8.
    Benner, P., Faßbender, H.: An implicitly restarted symplectic Lanczos method for the symplectic eigenvalue problem. SIAM J. Matrix Anal. Appl. 22(3), 682–713 (2000). (electronic)Google Scholar
  9. 9.
    Benner, P., Faßbender, H., Stoll, M.: A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process. Linear Algebra Appl. 435(3), 578–600 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Benner, P., Faßbender, H., Watkins, D.S.: Two connections between the SR and HR eigenvalue algorithms. Linear Algebra Appl. 272, 17–32 (1998)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Benner, P., Faßbender, H., Watkins, D.S.: SR and SZ algorithms for the symplectic (butterfly) eigenproblem. Linear Algebra Appl. 287(1–3), 41–76 (1999)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Benner, P., Kressner, D., Mehrmann, V.: Structure preservation: a challenge in computational control. Future Gener. Comput. Syst. 19, 1243–1252 (2003)CrossRefGoogle Scholar
  13. 13.
    Benner, P., Kressner, D., Mehrmann, V.: Skew-Hamiltonian and Hamiltonian eigenvalue problems: theory, algorithms and applications. In: Proceedings of the Conference on Applied Mathematics and Scientific Computing, pp. 3–39. Springer, Dordrecht (2005)Google Scholar
  14. 14.
    Benner, P., Mehrmann, V., Xu, H.: A new method for computing the stable invariant subspace of a real Hamiltonian matrix. J. Comput. Appl. Math. 86(1), 17–43 (1997)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Benner, P., Mehrmann, V., Xu, H.: A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math. 78(3), 329–358 (1998)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Benner, P., Mehrmann, V., Xu, H.: A note on the numerical solution of complex Hamiltonian and skew-Hamiltonian eigenvalue problems. ETNA, Electron. Trans. Numer. Anal. 8, 115–126 (1999)Google Scholar
  17. 17.
    Bunch, J.R.: The weak and strong stability of algorithms in numerical linear algebra. Linear Algebra Appl. 88/89, 49–66 (1987)Google Scholar
  18. 18.
    Bunse-Gerstner, A.: Matrix factorizations for symplectic QR-like methods. Linear Algebra Appl. 83, 49–77 (1986)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Bunse-Gerstner, A.: Symplectic QR-like methods. Habilitationsschrift, Universität Bielefeld, Bielefeld (1986)Google Scholar
  20. 20.
    Bunse-Gerstner, A., Byers, R., Mehrmann, V.: A quaternion QR algorithm. Numer. Math. 55(1), 83–95 (1989)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Bunse-Gerstner, A., Byers, R., Mehrmann, V.: A chart of numerical methods for structured eigenvalue problems. SIAM J. Matrix Anal. Appl. 13(2), 419–453 (1992)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Bunse-Gerstner, A., Mehrmann, V.: A symplectic QR like algorithm for the solution of the real algebraic Riccati equation. IEEE Trans. Automat. Control 31(12), 1104–1113 (1986)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Bunse-Gerstner, A., Mehrmann, V.: The HHDR algorithm and its application to optimal control problems. RAIRO Automat.-Prod. Inform. Ind. 23(4), 305–329 (1989)MATHMathSciNetGoogle Scholar
  24. 24.
    Bunse-Gerstner, A., Mehrmann, V., Watkins, D.S.: An SR algorithm for Hamiltonian matrices based on Gaussian elimination. In: XII Symposium on Operations Research (Passau, 1987). Volume 58 of Methods of Operations Research, pp. 339–357. Athenäum/Hain/Hanstein, Königstein (1989)Google Scholar
  25. 25.
    Byers, R.: Hamiltonian and symplectic algorithms for the algebraic Riccati equation. PhD thesis, Department Computer Science, Cornell University, Ithaca (1983)Google Scholar
  26. 26.
    Byers, R.: A Hamiltonian QR-algorithm. SIAM J. Sci. Stat. Comput. 7, 212–229 (1986)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Byers, R., Kressner, D.: Structured condition numbers for invariant subspaces. SIAM J. Matrix Anal. Appl. 28(2), 326–347 (2006). (electronic)Google Scholar
  28. 28.
    Byers, R., Mehrmann, V., Xu, H.: A structured staircase algorithm for skew-symmetric/symmetric pencils. ETNA, Electron. Trans. Numer. Anal. 26, 1–33 (2007)Google Scholar
  29. 29.
    Chu, D., Liu, X., Mehrmann, V.: A numerical method for computing the Hamiltonian Schur form. Numer. Math. 105(3), 375–412 (2007)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Della-Dora, J.: Sur quelques Algorithmes de recherche de valeurs propres. Thése, L’Université Scientifique et Medicale de Grenoble (1973)Google Scholar
  31. 31.
    Elsner, L.: On some algebraic problems in connection with general eigenvalue algorithms. Linear Algebra Appl. 26, 123–138 (1979)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Faßbender, H.: Error analysis of the symplectic Lanczos method for the symplectic eigenvalue problem. BIT 40(3), 471–496 (2000)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Faßbender, H.: Symplectic Methods for the Symplectic Eigenproblem. Kluwer Academic/Plenum, New York (2000)MATHGoogle Scholar
  34. 34.
    Faßbender, H.: The parameterized SR algorithm for symplectic (butterfly) matrices. Math. Comput. 70(236), 1515–1541 (2001)CrossRefGoogle Scholar
  35. 35.
    Ferng, W.R., Lin, W.-W., Wang, C.-S.: The shift-inverted J-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations. Comput. Math. Appl. 33(10), 23–40 (1997)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Flaschka, U., Mehrmann, V., Zywietz, D.: An analysis of structure preserving numerical methods for symplectic eigenvalue problems. RAIRO Automat.-Prod. Inform. Ind. 25(2), 165–189 (1991)MATHMathSciNetGoogle Scholar
  37. 37.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore (2012)Google Scholar
  38. 38.
    Higham, N.J., Mackey, D.S., Mackey, N., Tisseur, F.: Symmetric linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 29(1), 143–159 (2006/2007). (electronic)Google Scholar
  39. 39.
    Karow, M., Kressner, D., Tisseur, F.: Structured eigenvalue condition numbers. SIAM J. Matrix Anal. Appl. 28(4), 1052–1068 (2006). (electronic)Google Scholar
  40. 40.
    Laub, A.J.: A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Control AC-24, 913–921 (1979)Google Scholar
  41. 41.
    Lin, W.-W., Ho, T.-C.: On Schur type decompositions for Hamiltonian and symplectic pencils. Technical report, Institute of Applied Mathematics, National Tsing Hua University, Taiwan (1990)Google Scholar
  42. 42.
    Lin, W.-W., Mehrmann, V., Xu, H.: Canonical forms for Hamiltonian and symplectic matrices and pencils. Linear Algebra Appl. 301–303, 469–533 (1999)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 971–1004 (2006). (electronic)Google Scholar
  44. 44.
    Mackey, D.S., Mackey, N., Tisseur, F.: Structured mapping problems for matrices associated with scalar products. I. Lie and Jordan algebras. SIAM J. Matrix Anal. Appl. 29(4), 1389–1410 (2007)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Mehrmann, V.: Der SR-Algorithmus zur Berechnung der Eigenwerte einer Matrix. Diplomarbeit, Universität Bielefeld, Bielefeld (1979)Google Scholar
  46. 46.
    Mehrmann, V.: A symplectic orthogonal method for single input or single output discrete time optimal quadratic control problems. SIAM J. Matrix Anal. Appl. 9(2), 221–247 (1988)CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    Mehrmann, V.: The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. Volume 163 of Lecture Notes in Control and Information Sciences. Springer, Heidelberg (1991)Google Scholar
  48. 48.
    Mehrmann, V., Schröder, C., Watkins, D.S.: A new block method for computing the Hamiltonian Schur form. Linear Algebra Appl. 431(3–4), 350–368 (2009)CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    Mehrmann, V., Watkins, D.: Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl. 22, 1905–1925 (2000)MathSciNetGoogle Scholar
  50. 50.
    Paige, C.C., Van Loan, C.F.: A Schur decomposition for Hamiltonian matrices. Linear Algebra Appl. 41, 11–32 (1981)CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    Stewart, G.W.: An updating algorithm for subspace tracking. IEEE Trans. Signal Proc. 40, 1535–1541 (1992)CrossRefGoogle Scholar
  52. 52.
    Stewart, G.W.: Updating a rank-revealing ULV decomposition. SIAM J. Matrix Anal. Appl. 14(2), 494–499 (1993)CrossRefMATHMathSciNetGoogle Scholar
  53. 53.
    Van Loan, C.F.: A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra Appl. 61, 233–251 (1984)CrossRefMATHMathSciNetGoogle Scholar
  54. 54.
    Watkins, D.S.: On Hamiltonian and symplectic Lanczos processes. Linear Algebra Appl. 385, 23–45 (2004)CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    Watkins, D.S.: On the reduction of a Hamiltonian matrix to Hamiltonian Schur form. Electron. Trans. Numer. Anal. 23, 141–157 (2006). (electronic)Google Scholar
  56. 56.
    Watkins, D.S.: The Matrix Eigenvalue Problem. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)Google Scholar
  57. 57.
    Watkins, D.S., Elsner, L.: Chasing algorithms for the eigenvalue problem. SIAM J. Matrix Anal. Appl. 12, 374–384 (1991)CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    Watkins, D.S., Elsner, L.: Convergence of algorithms of decomposition type for the eigenvalue problem. Linear Algebra Appl. 143, 19–47 (1991)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Fachbereich Mathematik/Informatik, Zentrum für TechnomathematikUniversität BremenBremenGermany
  2. 2.Institut Computational Mathematics, AG NumerikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations