Advertisement

Structural and Optical Characterization of ZrO2 and Y2O3-ZrO2 Nanopowders

  • Nadiia Korsunska
  • Anton Zhuk
  • Vasyl Papusha
  • Oleksandr Kolomys
  • Yuliya Polishchuk
  • Yurii Bacherikov
  • Viktor Strelchuk
  • Vasyl Kladko
  • Tetyana Konstantinova
  • Tetyana Kryshtab
  • Larysa KhomenkovaEmail author

Abstract

Structural and optical properties of pure and Y-doped ZrO2 nanopowders with different Y content sintered by co-precipitation of Zr and Y nitrates were investigated. It was observed that the increase of Y content stimulates the transformation of crystalline phase from monoclinic through tetragonal to cubic while the increase of calcinations time leads to the increase of ZrO2 grain sizes. Generally, room temperature photo- and cathodoluminescence spectra showed several bands in blue–orange range. The increase of powder grains results in the enhancement of 2.81-eV photoluminescence caused probably by volume centers. Besides blue–orange emission, additional “red” cathodoluminescence band was observed. Its intensity exceeds essentially the magnitude of other components and increases with cooling. This “red” band was found to be complex and caused by intradefect transition. The excitation mechanism of this band is discussed.

Keywords

Y-doped ZrO2 Luminescence Raman scattering TEM Structural and optical characterization 

Notes

Acknowledgments

This work is supported by the National Academy of Sciences of Ukraine (project III-4-11).

References

  1. 1.
    Fidelus JD, Lojkowski W, Millers D, Smits K, Grigorjeva L (2009) Advanced nanocrystalline ZrO2 for optical oxygen sensors. IEEE Sensors 9:1268–1272Google Scholar
  2. 2.
    Jia R, Yang W, Bai Y, Li T (2004) Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent. Opt Mater 28:246–249CrossRefGoogle Scholar
  3. 3.
    Nakajima H, Mori T (2006) Photoluminescence excitation bands corresponding to defect states due to oxygen vacancies in yttria-stabilized zirconia. J Alloys Compd 408–412:728–731CrossRefGoogle Scholar
  4. 4.
    Smits K, Grigorjeva L, Millers D, Sarakovskis A, Grabis J, Lojkowski W (2011) Intrinsic defect related luminescence in ZrO2. J Lumin 131:2058–2062CrossRefGoogle Scholar
  5. 5.
    Petrik NG, Tailor DP, Orlando TM (1999) Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals. J Appl Phys 85:6770–6776CrossRefGoogle Scholar
  6. 6.
    Kirm M, Aarik J, Sildos I (2005) Thin films of HfO2 and ZrO2 as potential scintillators. Nucl Instrum Meth Phys Res A 537:251–255CrossRefGoogle Scholar
  7. 7.
    Smits K, Millers D, Grigorjeva L, Fidelus JD, Lojkowski W (2007) Comparison of ZrO2:Y nanocrystals and macroscopic single crystal luminescence. J Phys: Conf Ser 93:012035Google Scholar
  8. 8.
    Ken Yueh H, Cox B (2003) Luminescence properties of zirconium oxide films. J Nucl Mater 323:57–67CrossRefGoogle Scholar
  9. 9.
    Ramos-Brito F, Garcıa-Hipolito M, Martınez-Martinez R, Martinez-Sanchez E, Falcony C (2004) Preparation and characterization of photoluminescent praseodymium-doped ZrO2 nanostructured powders. J Phys D: Appl Phys 37:L13–L16CrossRefGoogle Scholar
  10. 10.
    Konstantinova T, Danilenko І, Glazunova V, Volkova G, Gorban O (2011) Mesoscopic phenomena in oxide nanoparticles systems: processes of growth. J Nanopart Res 13:4015–4023CrossRefGoogle Scholar
  11. 11.
    Konstantinova T, Danilenko I, Varyukhin V (2013) Effects of surface and interface in oxide nanoparticle system. Springer Proc Phys 146:135–144CrossRefGoogle Scholar
  12. 12.
    Doroshkevich AS, Danilenko IA, Konstantinova TE, Volkova GK, Glazunova VA (2010) Structural evolution of zirconia nanopowders as a coagulation process. Crystallogr Rep 55:863–865CrossRefGoogle Scholar
  13. 13.
    Kontoyannis CG, Orkoula M (1994) Quantitative determination of the cubic, tetragonal and monoclinic phases in partially stabilized zirconias by Raman spectroscopy. J Mater Sci 29:5316–5320CrossRefGoogle Scholar
  14. 14.
    Anastassakis E, Papanicolaou B, Asher IM (1975) Lattice dynamics and light scattering in hafnia and zirconia. J Phys Chem Solids 36:667–676CrossRefGoogle Scholar
  15. 15.
    Nomura K, Mizutani Y, Kawai M, Nakamura Y, Yamamoto O (2000) Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ionics 132:235–239CrossRefGoogle Scholar
  16. 16.
    Shi L, Tin KC, Wong NB (1999) Thermal stability of zirconia membranes. J Mater Sci 34:3367–3374CrossRefGoogle Scholar
  17. 17.
    Gazzoli D, Mattei G, Valigi M (2007) Raman and X-ray investigations of the incorporation of Ca2+ and Cd2+ in the ZrO2 structure. J Raman Spectrosc 38:824–831CrossRefGoogle Scholar
  18. 18.
    Korsunska N, Baran M, Zhuk A, Polischuk Y, Stara T, Kladko V, Bacherikov Y, Venger Z, Konstantinova T, Khomenkova L (2014) Role of paramagnetic defects in light emission processes in Y-doped ZrO2 nanopowder. Mater Res Express 1:045011CrossRefGoogle Scholar
  19. 19.
    Lashkarev VE, Lyubchenko AV, Sheinkman MK (1981) Non-equilibrium processes in photoconductors. Naukova dumka, KyivGoogle Scholar
  20. 20.
    Orera VM, Merino RI, Chen Y, Cases R, Alonso PJ (1990) Intrinsic electron and hole defects in stabilized zirconia single crystals. Phys Rev B 42:9782–9789CrossRefGoogle Scholar
  21. 21.
    Lin C, Zhang C, Lin J (2007) Phase transformation and photoluminescence properties of nanocrystalline ZrO2 powders prepared via the Pechini-type sol–gel process. J Phys Chem C 111:3300–3307CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nadiia Korsunska
    • 1
  • Anton Zhuk
    • 1
  • Vasyl Papusha
    • 1
  • Oleksandr Kolomys
    • 1
  • Yuliya Polishchuk
    • 1
  • Yurii Bacherikov
    • 1
  • Viktor Strelchuk
    • 1
  • Vasyl Kladko
    • 1
  • Tetyana Konstantinova
    • 2
  • Tetyana Kryshtab
    • 3
  • Larysa Khomenkova
    • 1
    Email author
  1. 1.V. Lashkaryov ISP of NAS of UkraineKyivUkraine
  2. 2.Donetsk Institute for Physics and Engineering named after O.O. Galkin of the NASUDonetskUkraine
  3. 3.Department of PhysicsESFM-IPNMéxico D.F.México

Personalised recommendations