Use of Mobile Phone Data to Estimate Visitors Mobility Flows

  • Lorenzo Gabrielli
  • Barbara Furletti
  • Fosca Giannotti
  • Mirco NanniEmail author
  • Salvatore Rinzivillo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8938)


Big Data originating from the digital breadcrumbs of human activities, sensed as by-product of the technologies that we use for our daily activities, allows us to observe the individual and collective behavior of people at an unprecedented detail. Many dimensions of our social life have big data “proxies”, such as the mobile calls data for mobility. In this paper we investigate to what extent data coming from mobile operators could be a support in producing reliable and timely estimates of intra-city mobility flows. The idea is to define an estimation method based on calling data to characterize the mobility habits of visitors at the level of a single municipality.


Big data Urban population Inter-city mobility Data mining 



This work has been partially funded by the European Union under the FP7-ICT Program: Project DataSim n. FP7-ICT-270833, and Project Petra n. 609042; and by the MIUR and MISE under the Industria 2015 program: Project MOTUS grating degree n.0000089 - application code MS01_00015.


  1. 1.
    Andrienko, G., Andrienko, N., Bak, P., Bremm, S., Keim, D., von Landesberger, T., Poelitz, C., Schreck, T.: A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage. J. Locat. Based Serv. 4, 3–4 (2010)CrossRefGoogle Scholar
  2. 2.
    Ahas, R., Silm, S., Järv, S., Saluveer, E.: Using mobile positioning data to model locations meaningful to users of mobile phones. J. Urban Technol. 17, 1 (2010)CrossRefGoogle Scholar
  3. 3.
    Calabrese, F., Colonna, M., Lovisolo, P., Parata, D., Ratti, C.: Real-time urban monitoring using cell phones: a case study in rome. IEEE Trans. Intell. Transp. Syst. 12, 141–151 (2011)CrossRefGoogle Scholar
  4. 4.
    Ratti, C., Sevtsuk, A., Huang, S., Pailer, R.: Mobile Landscapes: Graz in Real Time. MIT Senseable City Lab, Massachusetts (2005)Google Scholar
  5. 5.
    Furletti, B., Gabrielli, L., Monreale, A., Nanni, M., Pratesi, F., Rinzivillo, S., Giannotti, F., Pedreschi, D.: Assessing the privacy risk in the process of building call habit models that underlie the sociometer. Technical report.
  6. 6.
    Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Identifying users profiles from mobile calls habits. In: The Proceedings of UrbComp (2012)Google Scholar
  7. 7.
    Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Turism fluxes observatory: deriving mobility indicators from GSM calls habits. In: The Book of Abstracts of NetMob (2013)Google Scholar
  8. 8.
    Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Analysis of GSM calls data for understanding user mobility behavior. In: The Proceedings of Big Data (2013)Google Scholar
  9. 9.
    Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. 20, 695–719 (2011)CrossRefGoogle Scholar
  10. 10.
    Nanni, M., Trasarti, R., Furletti, B., Gabrielli, L., Mede, P.V.D., Bruijn, J.D., Romph, E.D., Bruil, G.: MP4-A project: mobility planning for Africa. In: D4D Challenge @ 3rd Conference on the Analysis of Mobile Phone datasets (NetMob 2013)Google Scholar
  11. 11.
    Oltenau, A.-M., Trasarti, R., Couronne, T., Giannotti, F., Nanni, M., Smoreda, Z., Ziemlicki, C.: GSM data analysis for tourism application. In: Proceedings of 7th International Symposium on Spatial Data Quality (ISSDQ) (2011)Google Scholar
  12. 12.
    Pereira, F.C., Liu, L., Calabrese, F.: Profiling transport demand for planned special events: prediction of public home distributions (2010).
  13. 13.
    Quercia, D., Lathia, N., Calabrese, F., Di Lorenzo, G., Crowcroft, J.: Recommending social events from mobile phone location data. In: International Conference on Data Mining, ICDM (2010)Google Scholar
  14. 14.
    Schlaich, J., Otterst\(\ddot{a}\)tter, T., Friedrich, M.: Generating trajectories from mobile phone data. In: The Proceedings of the 89th Annual Meeting Compendium of Papers, Transportation Research Board of the National Academies (2010)Google Scholar
  15. 15.
  16. 16.
    Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabasi, A.-L.: Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 11. ACM, New York (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lorenzo Gabrielli
    • 1
  • Barbara Furletti
    • 1
  • Fosca Giannotti
    • 1
  • Mirco Nanni
    • 1
    Email author
  • Salvatore Rinzivillo
    • 1
  1. 1.KDDLAB, ISTI CNRPisaItaly

Personalised recommendations