Skip to main content

Mechanisms of Disease and Natural History

  • Chapter
  • First Online:
Endovascular Aortic Repair

Abstract

Timely prophylactic treatment of patients with aortic disease is critical for prevention of lethal complications such as aortic rupture or dissection. However, the timeliness of such treatment heavily relies on knowledge of the pathophysiology and natural history of aortic disease. In the era of rapidly emerging endovascular treatment options for patients with aortic disease as an alternative to classic open surgery, accurate prediction of the natural history is becoming increasingly important. Advances in understanding the genetics that underlie aortic pathology as well as the biomechanical processes that proceed within the diseased aortic wall will enable physicians to better predict the natural history of aortic disease in individual patients and thereby offer a more personalized management. In this chapter we review the current understanding of the mechanism of development and the natural history of thoracic aortic disease in the context of establishing evidence-based criteria for surgical/endovascular intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elefteriades JA, Farkas EA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol. 2010;55:841–57.

    Article  CAS  PubMed  Google Scholar 

  2. Ziganshin BA, Elefteriades JA. Thoracic aortic disease. In: Stergiopoulos K, Brown DL, editors. Evidence-based cardiology consult. 1st ed. London: Springer; 2014. p. 331–53.

    Chapter  Google Scholar 

  3. Elefteriades JA. Beating a sudden killer. Sci Am. 2005;293:64–71.

    Article  PubMed  Google Scholar 

  4. Elefteriades JA. Thoracic aortic aneurysm: reading the enemy’s playbook. Curr Probl Cardiol. 2008;33:203–77.

    Article  PubMed  Google Scholar 

  5. Davies RR, Kaple RK, Mandapati D, Gallo A, Botta Jr DM, Elefteriades JA, et al. Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve. Ann Thorac Surg. 2007;83:1338–44.

    Article  PubMed  Google Scholar 

  6. Kuzmik GA, Feldman M, Tranquilli M, Rizzo JA, Johnson M, Elefteriades JA. Concurrent intracranial and thoracic aortic aneurysms. Am J Cardiol. 2010;105:417–20.

    Article  PubMed  Google Scholar 

  7. Hornick M, Moomiaie R, Mojibian H, Ziganshin B, Almuwaqqat Z, Lee ES, et al. ‘Bovine’ aortic arch—a marker for thoracic aortic disease. Cardiology. 2012;123:116–24.

    Article  PubMed  Google Scholar 

  8. Dumfarth J, Chou AS, Ziganshin BA, Bhandari R, Peterss S, Tranquilli M, et al. Atypical aortic arch branching variants: a novel marker for thoracic aortic disease. J Thorac Cardiovasc Surg. 2015;149:1586–92.

    Article  PubMed  Google Scholar 

  9. Hultgren R, Larsson E, Wahlgren CM, Swedenborg J. Female and elderly abdominal aortic aneurysm patients more commonly have concurrent thoracic aortic aneurysm. Ann Vasc Surg. 2012;26:918–23.

    Article  PubMed  Google Scholar 

  10. Robson JC, Kiran A, Maskell J, Hutchings A, Arden N, Dasgupta B, et al. The relative risk of aortic aneurysm in patients with giant cell arteritis compared with the general population of the UK. Ann Rheum Dis. 2015;74:129–35.

    Article  PubMed  Google Scholar 

  11. Ziganshin BA, Theodoropoulos P, Salloum MN, Zaza KJ, Tranquilli M, Mojibian HR, et al. Simple renal cysts as markers of thoracic aortic disease. J Am Heart Assoc. 2016;5:e002248.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Olsson C, Eriksson P, Franco-Cereceda A. Association between thoracic aortic disease and inguinal hernia. J Am Heart Assoc. 2014;3. pii: e001040.

    Google Scholar 

  13. Elefteriades JA, Sang A, Kuzmik G, Hornick M. Guilt by association: paradigm for detecting a silent killer (thoracic aortic aneurysm). Open Heart. 2015;2:e000169.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC. Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg. 1991;13:452–8.

    Article  CAS  PubMed  Google Scholar 

  15. Crawford ES, Coselli JS. Thoracoabdominal aneurysm surgery. Semin Thorac Cardiovasc Surg. 1991;3:300–22.

    CAS  PubMed  Google Scholar 

  16. Safi HJ, Miller III CC. Spinal cord protection in descending thoracic and thoracoabdominal aortic repair. Ann Thorac Surg. 1999;67:1937–9; discussion 1953–1938.

    Article  CAS  PubMed  Google Scholar 

  17. McMillan WD, Pearce WH. Inflammation and cytokine signaling in aneurysms. Ann Vasc Surg. 1997;11:540–5.

    Article  CAS  PubMed  Google Scholar 

  18. Shah PK. Inflammation, metalloproteinases, and increased proteolysis: an emerging pathophysiological paradigm in aortic aneurysm. Circulation. 1997;96:2115–7.

    Article  CAS  PubMed  Google Scholar 

  19. Alexander JJ. The pathobiology of aortic aneurysms. J Surg Res. 2004;117:163–75.

    Article  PubMed  Google Scholar 

  20. Ailawadi G, Eliason JL, Upchurch Jr GR. Current concepts in the pathogenesis of abdominal aortic aneurysm. J Vasc Surg. 2003;38:584–8.

    Article  PubMed  Google Scholar 

  21. Ruddy JM, Jones JA, Ikonomidis JS. Pathophysiology of thoracic aortic aneurysm (TAA): is it not one uniform aorta? Role of embryologic origin. Prog Cardiovasc Dis. 2013;56:68–73.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barbour JR, Spinale FG, Ikonomidis JS. Proteinase systems and thoracic aortic aneurysm progression. J Surg Res. 2007;139:292–307.

    Article  CAS  PubMed  Google Scholar 

  23. Hackmann AE, Thompson RW, LeMaire SA. Long-term suppressive therapy: clinical reality and future prospects. In: Elefteriades JA, editor. Acute aortic disease. New York: Informa Healthcare; 2007. p. 309–30.

    Google Scholar 

  24. Thompson RW, Parks WC. Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci. 1996;800:157–74.

    Article  CAS  PubMed  Google Scholar 

  25. McMillan WD, Pearce WH. Increased plasma levels of metalloproteinase-9 are associated with abdominal aortic aneurysms. J Vasc Surg. 1999;29:122–7; discussion 127–129.

    Article  CAS  PubMed  Google Scholar 

  26. LeMaire SA, Wang X, Wilks JA, Carter SA, Wen S, Won T, et al. Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J Surg Res. 2005;123:40–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ikonomidis JS, Jones JA, Barbour JR, Stroud RE, Clark LL, Kaplan BS, et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation. 2006;114:I365–70.

    Article  PubMed  CAS  Google Scholar 

  28. Ikonomidis JS, Jones JA, Barbour JR, Stroud RE, Clark LL, Kaplan BS, et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. J Thorac Cardiovasc Surg. 2007;133:1028–36.

    Article  CAS  PubMed  Google Scholar 

  29. Koullias GJ, Korkolis DP, Ravichandran P, Psyrri A, Hatzaras I, Elefteriades JA. Tissue microarray detection of matrix metalloproteinases, in diseased tricuspid and bicuspid aortic valves with or without pathology of the ascending aorta. Eur J Cardiothorac Surg. 2004;26:1098–103.

    Article  PubMed  Google Scholar 

  30. Koullias GJ, Ravichandran P, Korkolis DP, Rimm DL, Elefteriades JA. Increased tissue microarray matrix metalloproteinase expression favors proteolysis in thoracic aortic aneurysms and dissections. Ann Thorac Surg. 2004;78:2106–10; discussion 2110–2101.

    Article  PubMed  Google Scholar 

  31. Elefteriades JA. Thoracic aortic aneurysm: reading the enemy’s playbook. Yale J Biol Med. 2008;81:175–86.

    PubMed  PubMed Central  Google Scholar 

  32. El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol. 2009;6:771–86.

    Article  CAS  PubMed  Google Scholar 

  33. Tang PC, Yakimov AO, Teesdale MA, Coady MA, Dardik A, Elefteriades JA, et al. Transmural inflammation by interferon-gamma-producing T cells correlates with outward vascular remodeling and intimal expansion of ascending thoracic aortic aneurysms. FASEB J. 2005;19:1528–30.

    CAS  PubMed  Google Scholar 

  34. Schonbeck U, Sukhova GK, Gerdes N, Libby P. T(H)2 predominant immune responses prevail in human abdominal aortic aneurysm. Am J Pathol. 2002;161:499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lopez-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol. 1997;150:993–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jacob MP, Badier-Commander C, Fontaine V, Benazzoug Y, Feldman L, Michel JB. Extracellular matrix remodeling in the vascular wall. Pathol Biol (Paris). 2001;49:326–32.

    Article  CAS  Google Scholar 

  37. Rowe VL, Stevens SL, Reddick TT, Freeman MB, Donnell R, Carroll RC, et al. Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas. J Vasc Surg. 2000;31:567–76.

    Article  CAS  PubMed  Google Scholar 

  38. Henderson EL, Geng YJ, Sukhova GK, Whittemore AD, Knox J, Libby P. Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation. 1999;99:96–104.

    Article  CAS  PubMed  Google Scholar 

  39. Liao S, Curci JA, Kelley BJ, Sicard GA, Thompson RW. Accelerated replicative senescence of medial smooth muscle cells derived from abdominal aortic aneurysms compared to the adjacent inferior mesenteric artery. J Surg Res. 2000;92:85–95.

    Article  CAS  PubMed  Google Scholar 

  40. Zarins CK, Glagov S, Vesselinovitch D, Wissler RW. Aneurysm formation in experimental atherosclerosis: relationship to plaque evolution. J Vasc Surg. 1990;12:246–56.

    Article  CAS  PubMed  Google Scholar 

  41. Reed D, Reed C, Stemmermann G, Hayashi T. Are aortic aneurysms caused by atherosclerosis? Circulation. 1992;85:205–11.

    Article  CAS  PubMed  Google Scholar 

  42. Tilson MD. Aortic aneurysms and atherosclerosis. Circulation. 1992;85:378–9.

    Article  CAS  PubMed  Google Scholar 

  43. Tilson MD, Stansel HC. Differences in results for aneurysm vs occlusive disease after bifurcation grafts: results of 100 elective grafts. Arch Surg. 1980;115:1173–5.

    Article  CAS  PubMed  Google Scholar 

  44. Agmon Y, Khandheria BK, Meissner I, et al. Is aortic dilatation an atherosclerosis-related process? Clinical, laboratory, and transesophageal echocardiographic correlates of thoracic aortic dimensions in the population with implications for thoracic aortic aneurysm formation. J Am Coll Cardiol. 2003;42:1076–83.

    Article  PubMed  Google Scholar 

  45. Silence J, Collen D, Lijnen HR. Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (TIMP-1) gene. Circ Res. 2002;90:897–903.

    Article  CAS  PubMed  Google Scholar 

  46. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cardiac neural crest. Development. 2000;127:1607–16.

    CAS  PubMed  Google Scholar 

  47. Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol. 2012;30:165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gittenberger-de Groot AC, DeRuiter MC, Bergwerff M, Poelmann RE. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol. 1999;19:1589–94.

    Article  CAS  PubMed  Google Scholar 

  49. Achneck H, Modi B, Shaw C, Rizzo J, Albornoz G, Fusco D, et al. Ascending thoracic aneurysms are associated with decreased systemic atherosclerosis. Chest. 2005;128:1580–6.

    Article  PubMed  Google Scholar 

  50. Hung A, Zafar M, Mukherjee S, Tranquilli M, Scoutt LM, Elefteriades JA. Carotid intima-media thickness provides evidence that ascending aortic aneurysm protects against systemic atherosclerosis. Cardiology. 2012;123:71–7.

    Article  PubMed  Google Scholar 

  51. Chau K, Elefteriades JA. Ascending thoracic aortic aneurysms protect against myocardial infarctions. Int J Angiol. 2014;23:177–82.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chau KH, Bender JR, Elefteriades JA. Silver lining in the dark cloud of aneurysm disease. Cardiology. 2014;128:327–32.

    Article  CAS  PubMed  Google Scholar 

  53. Curtis A, Smith T, Ziganshin BA, Elefteriades JA. Ascending aortic proaneurysmal genetic mutations with antiatherogenic effects. Int J Angiol. 2015;24:189–97.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tilson MD, Seashore MR. Fifty families with abdominal aortic aneurysms in two or more first-order relatives. Am J Surg. 1984;147:551–3.

    Article  CAS  PubMed  Google Scholar 

  55. Tilson MD, Seashore MR. Human genetics of the abdominal aortic aneurysm. Surg Gynecol Obstet. 1984;158:129–32.

    CAS  PubMed  Google Scholar 

  56. Marfan AB. Un cas de deformation congenitale des quatre membres, plus prononce des extremites, caracterise par r allongement des coeur avec un certain degre d’amincissement. Bull Mem Soc Med Hop Paris. 1896;13:220–6.

    Google Scholar 

  57. Elefteriades JA, Pomianowski P. Practical genetics of thoracic aortic aneurysm. Prog Cardiovasc Dis. 2013;56:57–67.

    Article  PubMed  Google Scholar 

  58. Pomianowski P, Elefteriades JA. The genetics and genomics of thoracic aortic disease. Ann Cardiothorac Surg. 2013;2:271–9.

    PubMed  PubMed Central  Google Scholar 

  59. Coady MA, Davies RR, Roberts M, Goldstein LJ, Rogalski MJ, Rizzo JA, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg. 1999;134:361–7.

    Article  CAS  PubMed  Google Scholar 

  60. Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg. 1997;25:506–11.

    Article  CAS  PubMed  Google Scholar 

  61. Milewicz DM, Hariyadarshi P, Avidan N, Guo DC, Tran-Fadulu V. Genetic basis of thoracic aortic aneurysms and dissections. In: Elefteriades JA, editor. Acute aortic disease. New York: Informa Healthcare USA; 2007. p. 99–121.

    Google Scholar 

  62. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47:476–85.

    Article  CAS  PubMed  Google Scholar 

  63. Callewaert B, Malfait F, Loeys B, De Paepe A. Ehlers-Danlos syndromes and Marfan syndrome. Best Pract Res Clin Rheumatol. 2008;22:165–89.

    Article  CAS  PubMed  Google Scholar 

  64. De Paepe A, Malfait F. The Ehlers-Danlos syndrome, a disorder with many faces. Clin Genet. 2012;82:1–11.

    Article  PubMed  CAS  Google Scholar 

  65. Lin AE, Lippe B, Rosenfeld RG. Further delineation of aortic dilation, dissection, and rupture in patients with Turner syndrome. Pediatrics. 1998;102:e12.

    Article  CAS  PubMed  Google Scholar 

  66. Sybert VP, McCauley E. Turner’s syndrome. N Engl J Med. 2004;351:1227–38.

    Article  CAS  PubMed  Google Scholar 

  67. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275–81.

    Article  CAS  PubMed  Google Scholar 

  68. Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355:788–98.

    Article  CAS  PubMed  Google Scholar 

  69. Albornoz G, Coady MA, Roberts M, Davies RR, Tranquilli M, Rizzo JA, et al. Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006;82:1400–5.

    Article  PubMed  Google Scholar 

  70. Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010;87:701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488–93.

    Article  CAS  PubMed  Google Scholar 

  72. Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84:617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pape LA, Tsai TT, Isselbacher EM, Oh JK, O’gara PT, Evangelista A, et al. Aortic diameter >or = 5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2007;116:1120–7.

    Article  PubMed  Google Scholar 

  74. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J Am Coll Cardiol. 2010;55:e27–129.

    Google Scholar 

  75. Biesecker LG, Green RC. Diagnostic clinical genome and exome sequencing. N Engl J Med. 2014;370:2418–25.

    Article  PubMed  CAS  Google Scholar 

  76. Ziganshin BA, Bailey AE, Coons C, Dykas D, Charilaou P, Tanriverdi LH, et al. Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann Thorac Surg. 2015;100:1604–11.

    Article  PubMed  Google Scholar 

  77. Turkbey EB, Jain A, Johnson C, Redheuil A, Arai AE, Gomes AS, et al. Determinants and normal values of ascending aortic diameter by age, gender, and race/ethnicity in the Multi-Ethnic Study of Atherosclerosis (MESA). J Magn Reson Imaging. 2014;39:360–8.

    Article  PubMed  Google Scholar 

  78. Paruchuri V, Salhab KF, Kuzmik G, Gubernikoff G, Fang H, Rizzo JA, et al. Aortic size distribution in the general population: explaining the size paradox in aortic dissection. Cardiology. 2015;131:265–72.

    Article  PubMed  Google Scholar 

  79. Berger JA, Elefteriades JA. Toward uniformity in reporting of thoracic aortic diameter. Int J Angiol. 2012;21:243–4.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rizzo JA, Coady MA, Elefteriades JA. Procedures for estimating growth rates in thoracic aortic aneurysms. J Clin Epidemiol. 1998;51:747–54.

    Article  CAS  PubMed  Google Scholar 

  81. Rizzo JA, Coady MA, Elefteriades JA. Interpreting data on thoracic aortic aneurysms. Statistical issues. Cardiol Clin. 1999;17:797–805. x.

    Article  CAS  PubMed  Google Scholar 

  82. Coady MA, Rizzo JA, Hammond GL, Mandapati D, Darr U, Kopf GS, et al. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J Thorac Cardiovasc Surg. 1997;113:476–91; discussion 489–491.

    Article  CAS  PubMed  Google Scholar 

  83. Coady MA, Rizzo JA, Goldstein LJ, Elefteriades JA. Natural history, pathogenesis, and etiology of thoracic aortic aneurysms and dissections. Cardiol Clin. 1999;17:615–35. vii.

    Article  CAS  PubMed  Google Scholar 

  84. Coady MA, Rizzo JA, Hammond GL, Kopf GS, Elefteriades JA. Surgical intervention criteria for thoracic aortic aneurysms: a study of growth rates and complications. Ann Thorac Surg. 1999;67:1922–6; discussion 1953–1928.

    Article  CAS  PubMed  Google Scholar 

  85. Elefteriades JA, Ziganshin BA, Rizzo JA, Fang H, Tranquilli M, Paruchuri V, et al. Indications and imaging for aortic surgery: size and other matters. J Thorac Cardiovasc Surg. 2015;149:S10–3.

    Article  PubMed  Google Scholar 

  86. Davies RR, Goldstein LJ, Coady MA, Tittle SL, Rizzo JA, Kopf GS, et al. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann Thorac Surg. 2002;73:17–27; discussion 27–18.

    Article  PubMed  Google Scholar 

  87. Coady MA, Rizzo JA, Elefteriades JA. Developing surgical intervention criteria for thoracic aortic aneurysms. Cardiol Clin. 1999;17:827–39.

    Article  CAS  PubMed  Google Scholar 

  88. Davies RR, Gallo A, Coady MA, Tellides G, Botta DM, Burke B, et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann Thorac Surg. 2006;81:169–77.

    Article  PubMed  Google Scholar 

  89. Koullias G, Modak R, Tranquilli M, Korkolis DP, Barash P, Elefteriades JA. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J Thorac Cardiovasc Surg. 2005;130:677–83.

    Article  PubMed  Google Scholar 

  90. Hatzaras IS, Bible JE, Koullias GJ, Tranquilli M, Singh M, Elefteriades JA. Role of exertion or emotion as inciting events for acute aortic dissection. Am J Cardiol. 2007;100:1470–2.

    Article  PubMed  Google Scholar 

  91. Elefteriades JA, Hatzaras I, Tranquilli MA, Elefteriades AJ, Stout R, Shaw RK, et al. Weight lifting and rupture of silent aortic aneurysms. JAMA. 2003;290:2803.

    Article  CAS  PubMed  Google Scholar 

  92. Hatzaras I, Tranquilli M, Coady M, Barrett PM, Bible J, Elefteriades JA. Weight lifting and aortic dissection: more evidence for a connection. Cardiology. 2007;107:103–6.

    Article  CAS  PubMed  Google Scholar 

  93. Feldman M, Elefteraides JA. Triggers of aortic dissection. In: Boudoulas H, Stefanadis C, editors. The aorta: structure, function, dysfunction, and diseases. New York: Informa Healthcare; 2009; xi, 259 p.

    Google Scholar 

  94. Mehta RH, Manfredini R, Hassan F, Sechtem U, Bossone E, Oh JK, et al. Chronobiological patterns of acute aortic dissection. Circulation. 2002;106:1110–5.

    Article  PubMed  Google Scholar 

  95. Manfredini R, Boari B, Gallerani M, Salmi R, Bossone E, Distante A, et al. Chronobiology of rupture and dissection of aortic aneurysms. J Vasc Surg. 2004;40:382–8.

    Article  CAS  PubMed  Google Scholar 

  96. Sumiyoshi M, Kojima S, Arima M, Suwa S, Nakazato Y, Sakurai H, et al. Circadian, weekly, and seasonal variation at the onset of acute aortic dissection. Am J Cardiol. 2002;89:619–23.

    Article  PubMed  Google Scholar 

  97. Hata T, Ogihara T, Maruyama A, Mikami H, Nakamaru M, Naka T, et al. The seasonal variation of blood pressure in patients with essential hypertension. Clin Exp Hypertens A. 1982;4:341–54.

    CAS  PubMed  Google Scholar 

  98. Humphrey JD. Possible mechanical roles of glycosaminoglycans in thoracic aortic dissection and associations with dysregulated transforming growth factor-beta. J Vasc Res. 2013;50:1–10.

    Article  CAS  PubMed  Google Scholar 

  99. Roccabianca S, Ateshian GA, Humphrey JD. Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection. Biomech Model Mechanobiol. 2014;13:13–25.

    Article  PubMed  Google Scholar 

  100. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  PubMed  Google Scholar 

  101. Friedman T, Mani A, Elefteriades JA. Bicuspid aortic valve: clinical approach and scientific review of a common clinical entity. Expert Rev Cardiovasc Ther. 2008;6:235–48.

    Article  PubMed  Google Scholar 

  102. Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med. 2014;370:1920–9.

    Article  CAS  PubMed  Google Scholar 

  103. Michelena HI, Prakash SK, Della Corte A, Bissell MM, Anavekar N, Mathieu P, et al. Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon). Circulation. 2014;129:2691–704.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ward C. Clinical significance of the bicuspid aortic valve. Heart. 2000;83:81–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Januzzi JL, Isselbacher EM, Fattori R, Cooper JV, Smith DE, Fang J, et al. Characterizing the young patient with aortic dissection: results from the International Registry of Aortic Dissection (IRAD). J Am Coll Cardiol. 2004;43:665–9.

    Article  PubMed  Google Scholar 

  106. Michelena HI, Desjardins VA, Avierinos JF, Russo A, Nkomo VT, Sundt TM, et al. Natural history of asymptomatic patients with normally functioning or minimally dysfunctional bicuspid aortic valve in the community. Circulation. 2008;117:2776–84.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Coady M, Elefteraides JA. The natural history of thoracic aortic aneurysms: etiology, pathogenesis, and evidence-based decision making for surgical intervention. In: Elefteraides JA, editor. Acute aortic disease. New York: Informa Healthcare USA; 2007. p. 173–203.

    Google Scholar 

  108. Borges LF, Touat Z, Leclercq A, Zen AA, Jondeau’ G, Franc B, et al. Tissue diffusion and retention of metalloproteinases in ascending aortic aneurysms and dissections. Hum Pathol. 2009;40:306–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Elefteriades .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Mayo Foundation for Medical Education and Research

About this chapter

Cite this chapter

Ziganshin, B.A., Elefteriades, J.A. (2017). Mechanisms of Disease and Natural History. In: Oderich, G. (eds) Endovascular Aortic Repair. Springer, Cham. https://doi.org/10.1007/978-3-319-15192-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15192-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15191-5

  • Online ISBN: 978-3-319-15192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics