Skip to main content

Physical Characterization of Nanomaterials in Dispersion by Transmission Electron Microscopy in a Regulatory Framework

  • Chapter
Advanced Transmission Electron Microscopy

Abstract

TEM is one of the few techniques that can identify nanoparticles according to the current definitions. This chapter focuses on the different steps required to analyze dispersed nanomaterials by TEM. Methodologies to obtain homogeneous and stable dispersions of colloidal nanomaterials and powders are presented. The preparation of TEM specimens to obtain a representative distribution of particles on the grid is discussed. The application of TEM imaging methods, electron diffraction, and analytical TEM to obtain complementary information on the size, morphology, crystallographic structure, electronic structure, and composition of nanomaterials is reviewed.

In a qualitative TEM analysis, the key properties of the physical form of the nanomaterial under which it is exposed to in vitro and in vivo test systems are described based on TEM micrographs. Subsequently, a quantitative analysis which includes detection, classification, and measurement of primary particle properties and validation of the measurement results can be performed. The possibility to extract 3D information by fractal analysis of electron micrographs of aggregated nanomaterials with a fractal-like structure is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.P.J. Linsinger, G. Roebben, D. Gilliland, L. Calzolai, F. Rossi, N. Gibson, C. Klein, Requirements on Measurements for the Implementation of the European Commission Definition of the Term “Nanomaterial”, EUR 25404 EN (Publications Office of the European Union, Luxembourg, 2012)

    Google Scholar 

  2. SCENIHR, Risk Assessment of Products of Nanotechnologies. (Scientific Committee on Emerging and Newly Identified Health Risks, 2009)

    Google Scholar 

  3. ISO/TR 13014, Nanotechnologies—Guidance on Physico-Chemical Characterization for the Detailed Identification of Manufactured Nanomaterials Subjected to Toxicological Testing. (International Organization for Standardization, Geneva, 2009)

    Google Scholar 

  4. OECD, Guidance on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials, ENV/JM/MONO(2012)40 (Organisation for Economic Co-Operation and Development, Paris, 2012)

    Google Scholar 

  5. ISO 13322-1, Particle Size Analysis—Image Analysis Methods, Part 1: Static Image Analysis Methods. (International Organization for Standardization, Geneva, 2004)

    Google Scholar 

  6. E.A. Bleeker, W.H. de Jong, R.E. Geertsma, M. Groenewold, E.H. Heugens, M. Koers-Jacquemijns, D. van de Meent, J.R. Popma, A.G. Rietveld, S.W. Wijnhoven, Considerations on the EU definition of a nanomaterial: science to support policy making. Regul. Toxicol. Pharmacol. 65, 119 (2013)

    Google Scholar 

  7. G. Lövestam, H. Rauscher, G. Roebben, B.S. Klüttgen, N. Gibson, J.-P. Putaud, H. Stamm, Considerations on a Definition of Nanomaterial for Regulatory Purposes. JRC Reference Reports (Publications Office of the European Union, Luxembourg, 2010)

    Google Scholar 

  8. ISO/TR 11360, Nanotechnologies—Methodology for the Classification and Categorization of Nanomaterials. (International Organization for Standardization, Geneva, 2010)

    Google Scholar 

  9. ISO/TS 27687, Nanotechnologies—Terminology and Definitions for Nano-Objects—Nanoparticle, Nanofibre and Nanoplate. (International Organization for Standardization, Geneva, 2008)

    Google Scholar 

  10. ISO 9276-6, Representation of Results of Particle Size Analysis Part 6: Descriptive and Quantitative Representation of Particle Shape and Morphology. (International Organization for Standardization, Geneva, 2008)

    Google Scholar 

  11. S. Barlow, A. Chesson, J.D. Collins, A. Flynn, A. Hardy, K.-D. Jany, A. Knaap, H. Kuiper, J.C. Larsen, P. Le Neindre, J. Schans, J. Schlatter, V. Silano, S. Skerfving, P. Vannier, Scientific opinion of the scientific committee: the potential risks arising from nanoscience and nanotechnologies on food and feed safety, Question no EFSA-Q-2007-124a. EFSA J. 958, 1–39 (2009)

    Google Scholar 

  12. P.-J. De Temmerman, E. Verleysen, J. Lammertyn, J. Mast, Semi-automatic size measurements of primary particles in aggregated nanomaterials by transmission electron microscopy. Powder Technol. 261, 191 (2014)

    Google Scholar 

  13. E. Verleysen, P.-J. De Temmerman, E. Van Doren, M. Abi Daoud Francisco, J. Mast, Quantitative characterization of aggregated and agglomerated titanium oxide nanomaterials by transmission electron microscopy. Powder Technol. 258, 180 (2014)

    Google Scholar 

  14. P.-J. De Temmerman, E. Van Doren, E. Verleysen, Y. Van der Stede, M. Francisco, J. Mast, Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy. J. Nanobiotechnol. 10, 24 (2012)

    Google Scholar 

  15. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002)

    Google Scholar 

  16. S. Sun, C. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices (2000). Science 287, 1989–1992 (1989)

    Google Scholar 

  17. B. Schaffer, K. Riegler, G. Kothleitner, W. Grogger, F. Hofer, Monochromated, spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles in the plasmon range. Micron 40, 269 (2009)

    Google Scholar 

  18. T. Klaus, R. Joerger, E. Olsson, C.-G. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U. S. A. 96, 13611 (1999)

    Google Scholar 

  19. A.L. Koh, K. Bao, I. Khan, W.E. Smith, G. Kothleitner, P. Nordlander, S.A. Maier, D.W. McComb, Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 3, 3015 (2009)

    Google Scholar 

  20. S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, C. Colliex, Imaging Si nanoparticles embedded in SiO2 layers by (S) TEM-EELS. Ultramicroscopy 108, 346 (2008)

    Google Scholar 

  21. T.C. Rojas, M.J. Sayagués, A. Caballero, Y. Koltypin, A. Gedanken, L. Ponsonnet, B. Vacher, J.M. Martin, A. Fernández, TEM, EELS and EFTEM characterization of nickel nanoparticles encapsulated in carbon. J. Mater. Chem. 10, 715 (2000)

    Google Scholar 

  22. P.A. Midgley, M. Weyland, 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413 (2003)

    Google Scholar 

  23. S. Van Aert, K.J. Batenburg, M.D. Rossell, R. Erni, G. Van Tendeloo, Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374 (2011)

    Google Scholar 

  24. S. Sueda, K. Yoshida, N. Tanaka, Quantification of metallic nanoparticle morphology on TiO2 using HAADF-STEM tomography. Ultramicroscopy 110, 1120 (2010)

    Google Scholar 

  25. E.M. Pouget, P.H. Bomans, J.A. Goos, P.M. Frederik, N.A. Sommerdijk, The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455 (2009)

    Google Scholar 

  26. E. Van Doren, P.-J. De Temmerman, M. Francisco, J. Mast, Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. J. Nanobiotechnol. 9, 17 (2011)

    Google Scholar 

  27. SCENIHR, Opinion on the Scientific Aspects of the Existing and Proposed Definitions Relating to Products of Nanoscience and Nanotechnologies, scenihr_o_012 (Scientific committee on emerging and newly identified health risks, Brussels, 2007)

    Google Scholar 

  28. SCENIHR, Scientific Basis for the Definition of the Term “Nanomaterial”, scenihr_o_030 (Scientific Committee on Emerging and Newly Identified Health Risks, Brussels, 2010)

    Google Scholar 

  29. EC, Commission recommendation of 18 October 2011 on the definition of nanomaterial. 2011/696/EU. Off. J. Eur. Union L275, 30 (2011)

    Google Scholar 

  30. EC, Regulation (EC) No 1223/2009 of the European parliament and of the council of 30 November 2009 on cosmetic products. Off. J. Eur. Union L342, 59 (2009)

    Google Scholar 

  31. EC-1333/2008, Regulation (EC) no 1333/2008 of the European parliament and of the council of 16 December 2008 on food additives. Off. J. Eur. Union L354, 16 (2008)

    Google Scholar 

  32. EC-258/97, Regulation (EC) No 258/97 of the European parliament and of the council of 27 January 1997 concerning novel foods and novel food ingredients. Off. J. Eur. Communities. (1997)

    Google Scholar 

  33. H. Stamm, N. Gibson, E. Anklam, Detection of nanomaterials in food and consumer products: bridging the gap from legislation to enforcement. Food Addit. Contam. A Chem. Anal. Control Expo. Risk Assess. 29, 1175–1182 (2012)

    Google Scholar 

  34. OECD, Preliminary Guidance Notes on Sample Preparation and Dosimetry for the Safety Testing of Manufactured Nanomaterials, ENV/JM/MONO(2010)25 (Organisation for Economic Co-Operation and Development, Paris, 2010)

    Google Scholar 

  35. OECD, Guidance Manual for the Testing of Manufactured Nanomaterials: OECD Sponsorship Programme: First Revision, ENV/JM/MONO(2009)20/REV (Organisation for Economic Co-operation and Development, Paris, 2010)

    Google Scholar 

  36. E.K. Lesher, A.R. Poda, A.J. Bednar, J.F. Ranville, Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry (FFF-ICP-MS): Methodology and Application to Environmental Nanoparticle Research, in Field-Flow Fractionation in Biopolymer Analysis, ed. by S. Kim, R. Williams, K.D. Caldwell (Springer, Vienna, 2012), pp. 277–299

    Google Scholar 

  37. EFSA, Scientific opinion: guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J. 9, 2140 (2011)

    Google Scholar 

  38. Nanogenotox, The final NANOGENOTOX Publishable Report. (2013), http://www.nanogenotox.eu/files/PDF/nanogenotox_web.pdf

  39. K.J. Mysels, Textbook errors: II. Brownian motion and the stability of colloids. J. Chem. Educ. 32, 319 (1955)

    Google Scholar 

  40. D.L. Kaiser, R.L. Watters, Reference Material 8011: Gold Nanoparticles, Nominal 10 nm Diameter. (Report of Investigation, National Institute of Standards & Technology, Gaithersburg, 2007a)

    Google Scholar 

  41. D.L. Kaiser, R.L. Watters, Reference Material 8012: Gold Nanoparticles, Nominal 30 nm Diameter. (Report of Investigation, National Institute of Standards & Technology, Gaithersburg, 2007b)

    Google Scholar 

  42. D. L. Kaiser and R. L. Watters, Reference Material 8013: Gold Nanoparticles, Nominal 60 nm Diameter (2007c), Report of Investigation, National Institute of Standards & Technology, Gaithersburg, MD

    Google Scholar 

  43. IRMM, Certificate of Analysis ERM®-FD100 (Institute for reference materials and measurements, Geel, 2011)

    Google Scholar 

  44. IRMM, Certificate of Analysis ERM®-FD304 (Institute for reference materials and measurements, Geel, 2012)

    Google Scholar 

  45. T.F. Scientific, 3000 Series Nanosphere™ Size Standards. (2014) http://www.thermoscientific.com/en/product/3000-series-nanosphere-size-standards.html

  46. C. Guiot, O. Spalla, Stabilization of TiO2 nanoparticles in complex medium through a pH adjustment protocol. Environ. Sci. Technol. 47, 1057 (2013)

    Google Scholar 

  47. P. Bihari, M. Vippola, S. Schultes, M. Praetner, A. Khandoga, C. Reichel, C. Coester, T. Tuomi, M. Rehberg, F. Krombach, Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part. Fibre Toxicol. 5, 14 (2008)

    Google Scholar 

  48. K. Jensen, Y. Kembouche, E. Christiansen, N. Jacobsen, H. Wallin, C. Guiot, O. Spalla, O. Witschger, The Generic NANOGENOTOX Dispersion Protocol (The National Research Centre for the Working Environment, Copenhagen, 2011)

    Google Scholar 

  49. PROSPECT, Protocol for Nanoparticle Dispersion (2010)

    Google Scholar 

  50. J.S. Taurozzi, V.A. Hackley, Preparation of Nanoparticle Dispersions from Powdered Material Using Ultrasonic Disruption, National Institute of Standards and Technology NIST SP 1200-2, 15 (2012)

    Google Scholar 

  51. J.S. Taurozzi, V.A. Hackley, M. R. Weisner, Preparation of Nanoscale TiO 2 Dispersions in an Environmental Matrix for Eco-Toxicological Assessment, National Institute of Standards and Technology NIST SP 1200-5, 12 (2012)

    Google Scholar 

  52. Cytodiagnostics, Surfactant Stabilized Gold Nanoparticles. (2014), http://www.cytodiagnostics.com/store/pc/Surfactant-Stabilized-Gold-Nanoparticles-c141.htm

  53. C.-P. Lienemann, A. Heissenberger, G.G. Leppard, D. Perret, Optimal preparation of water samples for examination of colloidal material by transmission electron microscopy. Aquat. Microb. Ecol. 14, 205 (1998)

    Google Scholar 

  54. J. Stirling, A. Curry, B. Eyden, Diagnostic Electron Microscopy: A Practical Guide to Tissue Preparation and Interpretation (Wiley, Chichester, 2012)

    Google Scholar 

  55. Dune Sciences, Smart Grids: Functionalized grids for advanced imaging. (2010), http://www.dunesciences.com/files/SMARTGrids_Brochure.pdf

  56. D.M. Cao, Powder TEM Sample preparation for Powder Sample. (2006), http://mcc.lsu.edu/TEM%20sample%20preparation.html

  57. M. De Graef, Introduction to Conventional Transmission Electron Microscopy (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  58. D. Williams, C. Carter, Transmission Electron Microscopy, vol. 2 (Springer, New York, 1996). ISBN 0-306-45324-X

    Google Scholar 

  59. P.-J. De Temmerman, J. Lammertyn, B. De Ketelaere, V. Kestens, G. Roebben, E. Verleysen, J. Mast, Measurement uncertainties of size, shape, and surface measurements using transmission electron microscopy of near-monodisperse, near-spherical nanoparticles. J. Nanoparticle Res. 16, 1 (2013)

    Google Scholar 

  60. H. Masuda, K. Gotoh, Study on the sample size required for the estimation of mean particle diameter. Adv. Powder Technol. 10, 159 (1999)

    Google Scholar 

  61. H.G. Merkus, Particle Size Measurements: Fundamentals, Practice, Quality (Springer, Pijnacker, 2009)

    Google Scholar 

  62. N. Chakroune, G. Viau, S. Ammar, L. Poul, D. Veautier, M.M. Chehimi, C. Mangeney, F. Villain, F. Fiévet, Acetate-and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies. Langmuir 21, 6788 (2005)

    Google Scholar 

  63. S. Link, Z.L. Wang, M. El-Sayed, Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103, 3529 (1999)

    Google Scholar 

  64. S.-W. Lee, W.M. Sigmund, Formation of anatase TiO2 nanoparticles on carbon nanotubes. Chem. Commun. (Camb). 6, 780–781 (2003)

    Google Scholar 

  65. S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204 (2002)

    Google Scholar 

  66. F. Zhang, S.-W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Cerium oxide nanoparticles: size-selective formation and structure analysis. Appl. Phys. Lett. 80, 127 (2002)

    Google Scholar 

  67. R. Jin, Y. Cao, C.A. Mirkin, K. Kelly, G.C. Schatz, J. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901 (2001)

    Google Scholar 

  68. M. Li, H. Schnablegger, S. Mann, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393 (1999)

    Google Scholar 

  69. I. Srnová-Šloufová, F. Lednický, A. Gemperle, J. Gemperlová, Core-shell (Ag) Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir 16, 9928 (2000)

    Google Scholar 

  70. Y. Xu, M. Yamazaki, P. Villars, Inorganic materials database for exploring the nature of material. Jpn. J. Appl. Phys 50, 11RH02-1–11RH02-5 (2011)

    Google Scholar 

  71. S.J. Pennycook, P.D. Nellist, Z-contrast scanning transmission electron microscopy, in Impact of electron scanning probe microscopy on materials research, ed. by D. Rickerby, G. Valdrè, U. Valdrè (Kluwer Academic, Amsterdam, 1999), p. 161. ISBN 0-7923-5939-9

    Google Scholar 

  72. M. Shiojiri, T. Yamazaki, Atomic resolved HAADF-STEM for composition analysis. JEOL News 38, 54 (2003)

    Google Scholar 

  73. S. Pennycook, D. Jesson, High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14 (1991)

    Google Scholar 

  74. P. Hartel, H. Rose, C. Dinges, Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93 (1996)

    Google Scholar 

  75. P.A. Midgley, M. Weyland, J.M. Thomas, B.F. Johnson, Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem. Commun. 10, 907–908 (2001)

    Google Scholar 

  76. J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346 (2005)

    Google Scholar 

  77. J. Gonzalez, J. Hernandez, M. López-Haro, E. Del Rio, J. Delgado, A. Hungria, S. Trasobares, S. Bernal, P.A. Midgley, J.J. Calvino, 3 D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF‐STEM electron tomography. Angew. Chem. Int. Ed. 121, 5417 (2009)

    Google Scholar 

  78. T. Akita, K. Tanaka, M. Kohyama, M. Haruta, HAADF-STEM observation of Au nanoparticles on TiO2. Surf. Interface Anal. 40, 1760–1763 (2008)

    Google Scholar 

  79. H. Yu, M. Chen, P.M. Rice, S.X. Wang, R. White, S. Sun, Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 5, 379 (2005)

    Google Scholar 

  80. S. Utsunomiya, R.C. Ewing, Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. Environ. Sci. Technol. 37, 786 (2003)

    Google Scholar 

  81. T. Epicier, K. Sato, F. Tournus, T. Konno, Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM. J. Nanoparticle Res. 14, 1 (2012)

    Google Scholar 

  82. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd edn. (Springer, New York, 1996)

    Google Scholar 

  83. X. Zhang, K.-Y. Chan, Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem. Mater. 15, 451 (2003)

    Google Scholar 

  84. J. Mock, M. Barbic, D. Smith, D. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755 (2002)

    Google Scholar 

  85. S. Pokrant, M.C. Cheynet, S. Irsen, ELNES: A Promising Method for Structural and Chemical Nanoparticle Analysis? (Verlag der TU Graz, 2009)

    Google Scholar 

  86. S. Turner, S. Lazar, B. Freitag, R. Egoavil, J. Verbeeck, S. Put, Y. Strauven, G. Van Tendeloo, High resolution mapping of surface reduction in ceria nanoparticles. Nanoscale 3, 3385 (2011)

    Google Scholar 

  87. F. Wang, M. Malac, R.F. Egerton, Energy-loss near-edge fine structures of iron nanoparticles. Micron 37, 316 (2006)

    Google Scholar 

  88. O. Stéphan, A. Vlandas, R. de la Concha, A. Loiseau, S. Trasobares, C. Colliex, Probing electronic states in nanotubes and related-nanoparticles at the nanometer scale, Conference Series-Institute of Physics, Philadelphia; Institute of Physics; 1999, (2004) p. 437

    Google Scholar 

  89. H. Sauer, S. Nepijko, M. Klimiankou, HRTEM and EELS characterization of TiO2 nanoparticles in Ti-doped zeolite. Microsc. Microanal. 9, 192 (2003)

    Google Scholar 

  90. A. Santos-Beltrán, S. Maldonado-Ruiz, R. Martinez-Sanchez, F. Espinosa-Magana, H. Flores, V. Gallegos-Orozco, ELNES of Al-Al4C3 nanoparticles produced by mechanical milling. Microsc. Microanal. 14, 362 (2008)

    Google Scholar 

  91. C. Carlson, S. Hussain, A. Schrand, L.K. Braydich-Stolle, K. Hess, R. Jones, J. Schlager, Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112, 13608 (2008)

    Google Scholar 

  92. J.E. Choi, S. Kim, J.H. Ahn, P. Youn, J.S. Kang, K. Park, J. Yi, D.-Y. Ryu, Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat. Toxicol. 100, 151 (2010)

    Google Scholar 

  93. E.-J. Park, J. Yi, Y. Kim, K. Choi, K. Park, Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro. 24, 872–878 (2010)

    Google Scholar 

  94. Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen‐Dechent, Size-dependent cytotoxicity of gold nanoparticles. Small 3, 1941–1949 (2007)

    Google Scholar 

  95. C.M. Goodman, C.D. McCusker, T. Yilmaz, V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem. 15, 897 (2004)

    Google Scholar 

  96. B.D. Chithrani, A.A. Ghazani, W.C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662 (2006)

    Google Scholar 

  97. C.D. Walkey, J.B. Olsen, H. Guo, A. Emili, W.C. Chan, Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139 (2012)

    Google Scholar 

  98. A.K. Suresh, D.A. Pelletier, W. Wang, J.L. Morrell-Falvey, B. Gu, M.J. Doktycz, Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28, 2727 (2012)

    Google Scholar 

  99. OECD, The Price of Prejudice: Labour Market Discrimination on the Grounds of Gender and Ethnicity. Technical Annex. (Organisation for Economic Co-operation and Development, 2008)

    Google Scholar 

  100. W.C. Krumbein, L.L. Sloss, Stratigraphy and Sedimentation (W.H. Freeman, San Francisco, 1963)

    Google Scholar 

  101. NIST 960-1, Particle Size Characterization (2001)

    Google Scholar 

  102. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006)

    Google Scholar 

  103. G. Nichols, S. Byard, M.J. Bloxham, J. Botterill, N.J. Dawson, A. Dennis, V. Diart, N.C. North, J.D. Sherwood, A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J. Pharm. Sci. 91, 2103 (2002)

    Google Scholar 

  104. H.G. Brittain, Representations of particle shape, size, and distribution. Pharm. Technol. 25, 38–45 (2001)

    Google Scholar 

  105. ASTM, F1877-05 Standard Practice for Characterization of Particles (2010)

    Google Scholar 

  106. NIST, Glossary of Morphology Terms. (Center for analytical chemistry, National Institute of Standards and Technology, Gaithersburg, 2005)

    Google Scholar 

  107. P.J. Barrett, The shape of rock particles, a critical review. Sedimentology 27, 291 (1980)

    Google Scholar 

  108. USP, Optical Microscopy, General Test 776, USP 24 (The United States Pharmacopeial Convention, Rockville, 2000), p. 1965

    Google Scholar 

  109. OECD, Synthetic Amorphous Silica and Silicates—SIDS Initial Assessment Report for SIAM 19, OECD SIDS (UNEP Publications, Berlin, 2004)

    Google Scholar 

  110. M. Hassellöv, J. Readman, J. Ranville, K. Tiede, Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17, 344 (2008)

    Google Scholar 

  111. W.D. Pyrz, D.J. Buttrey, Particle size determination using TEM: a discussion of image acquisition and analysis for the novice microscopist. Langmuir 24, 11350 (2008)

    Google Scholar 

  112. ISO 9276-2, Representation of Results of Particle Size Analysis, Part 2: Calculation of Average Particle Sizes/Diameters and Moments from Particle Size Distributions. (International Organization for Standardization, Geneva, 2001)

    Google Scholar 

  113. ISO 9276-1, Representation of Results of Particle Size Analysis, Part 1: Graphical Representation. (International Organization for Standardization, Geneva, 1998)

    Google Scholar 

  114. iTEM, iTEM is the image analysis platform for transmission-electron microscopy. (2014), http://www.soft-imaging.net/en/eu/eng/2343_5832.htm

  115. Visilog, Visilog is the Reference Environment for Creating Image Processing Applications. (2014)

    Google Scholar 

  116. OMERO, OMERO is Client-Server Software for Visualization, Management and Analysis of Biological Microscope Images. (2014), http://www.openmicroscopy.org/site

  117. Fiji, Fiji is an image processing package based on ImageJ. (2014)

    Google Scholar 

  118. ImageJ, Image processing and analysis in Java (2014)

    Google Scholar 

  119. K. Franks, A. Braun, J. Charoud-Got, O. Couteau, V. Kestens, A. Lamberty, T.P.J. Linsinger, G. Roebben, Certified Reference Material ERM®-FD304: Certification of the Equivalent Spherical Diameters of Silica Nanoparticles in Aqueous Solution (European Union, Luxembourg, 2012)

    Google Scholar 

  120. A. Braun, K. Franks, V. Kestens, G. Roebben, A. Lamberty, T.P.J. Linsinger, Certified Reference Material ERM®—FD100: Certification of Equivalent Spherical Diameters of Silica Nanoparticles in Water (European Union, Luxembourg, 2011)

    Google Scholar 

  121. C. Singh, S. Friedrichs, M. Levin, R. Birkedal, K.A. Jensen, G. Pojana, W. Wohlleben, S. Schulte, K. Wiench, T. Turney, O. Koulaeva, D. Marshall, K. Hund-Rinke, W. Kördel, E. Van Doren, P.-J. De Temmerman, M. Abi Daoud Francisco, J. Mast, N. Gibson, R. Koeber, T.P.J. Linsinger, C. Klein, NM-Series of Representative Manufactured Nanomaterials: Zinc Oxide NM-110, NM-111, NM-112, NM-113 Characterisation and Test Item Preparation, EUR 25066 EN–2011 (Publications Office of the European Union, Luxembourg, 2011)

    Google Scholar 

  122. K. Rasmussen, A. Mech, P.-J. De Temmerman, J. Mast, K.A. Jensen, M. Levin, S.H. Nielsen, I. Koponen, P. Clausen, R. Birkedal, Y. Kembouche, D. Rousset, S. Bau, B. Bianchi, O. Witschger, O. Spalla, C. Guiot, B. Shivachev, C. Motzkus, G. Pojana, A. Bilanicova, A. Marcomini, D. Gilliland, P.N. Gibson, H. Rauscher, H. Stamm, Synthetic Amorphous Silicon Dioxide (SAS; NM-200, NM-201, NM-202, NM-203 and NM-204) Characterization, Stability and Homogeneity, EUR 26046 (Publications Office of the European Union, Luxembourg, 2013)

    Google Scholar 

  123. K. Rasmussen, J. Mast, P.-J. De Temmerman, E. Verleysen, N. Waegeneers, F. Van Steen, J.C. Pizzolon, L. De Temmerman, E. Van Doren, K. Jensen, R. Birkedal, M. Levin, S.H. Nielsen, I.K. Koponen, P.A. Clausen, V. Kofoed-Sørensen, Y. Kembouche, N. Thieriet, O. Spalla, C. Guiot, D. Rousset, O. Witschger, S. Bau, B. Bianchi, C. Motzkus, B. Shivachev, L. Dimowa, R. Nikolova, D. Nihtianova, M. Tarassov, O. Petrov, S. Bakardjieva, D. Gilliland, F. Pianella, G. Ceccone, V. Spampinato, G. Cotogno, N. Gibson, C. Gaillard, A. Mech, Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties (Publications Office of the European Union, Luxembourg, 2014)

    Google Scholar 

  124. F.W. Leong, M. Brady, J.O.D. McGee, Correction of uneven illumination (vignetting) in digital microscopy images. J. Clin. Pathol. 56, 619 (2003)

    Google Scholar 

  125. T. Chen, W. Yin, X.S. Zhou, D. Comaniciu, T.S. Huang, Illumination Normalization for Face Recognition and Uneven Background Correction Using Total Variation Based Image Models. Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, IEEE, (2005) p. 532

    Google Scholar 

  126. Olympus, Olympus Stream. (2014), http://www.olympus-ims.com/en/microscope/stream/

  127. I. Grishin, K. Thomson, F. Migliorini, J.J. Sloan, Application of the Hough transform for the automatic determination of soot aggregate morphology. Appl. Opt. 51, 610–620 (2012)

    Google Scholar 

  128. J. Zhao, M.A. Brubaker, J.L. Rubinstein, TMaCS: A hybrid template matching and classification system for partially automated particle selection. J. Struct. Biol. 181, 234 (2013)

    Google Scholar 

  129. EFSA, Scientific opinion: the potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J. 958, 1 (2009)

    Google Scholar 

  130. Z. Chu, Y. Huang, Q. Tao, Q. Li, Cellular uptake, evolution, and excretion of silica nanoparticles in human cells. Nanoscale 3, 3291 (2011)

    Google Scholar 

  131. J.C. Russ, The Image Processing Handbook (CRC, Boca Raton, 2011)

    Google Scholar 

  132. M.N. Pons, H. Vivier, K. Belaroui, B. Bernard-Michel, F. Cordier, D. Oulhana, J.A. Dodds, Particle morphology: from visualisation to measurement. Powder Technol. 103, 44 (1999)

    Google Scholar 

  133. ISO 9276-3, Representation of Results of Particle Size Analysis, Part 3: Adjustment of an Experimental Curve to a Reference Model. (International Organization for Standardization, Geneva, 2008)

    Google Scholar 

  134. D. Freedman, P. Diaconis, On the histogram as a density estimator: L 2 theory. Z. Wahrscheinlichkeit. 57, 453 (1981)

    Google Scholar 

  135. D.W. Scott, Scott’s rule. Wiley Interdiscip. Rev. Comput. Stat. 2, 497 (2010)

    Google Scholar 

  136. D.W. Scott, Sturges’ rule. Wiley Interdiscip. Rev. Comput. Stat. 1, 303 (2009)

    Google Scholar 

  137. A.M. Brasil, T.L. Farias, M.G. Carvalho, A recipe for image characterization of fractal-like aggregates. J. Aerosol Sci. 30, 1379–1389 (1999)

    Google Scholar 

  138. A.M. Brasil, T.L. Farias, M.G. Carvalho, Evaluation of the fractal properties of cluster-cluster aggregates. Aerosol Sci. Tech. 33, 440–454 (2000)

    Google Scholar 

  139. A.M. Brasil, T.L. Farias, M.G. Carvalho, Ü.Ö. Köylü, Numerical characterization of the morphology of aggregated particles. J. Aerosol Sci. 32, 489 (2001)

    Google Scholar 

  140. Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Fractal and projected structure properties of soot aggregates. Combust. Flame 100, 621 (1995)

    Google Scholar 

  141. S. Bau, O. Witschger, F. Gensdarmes, O. Rastoix, D. Thomas, A TEM-based method as an alternative to the BET method for measuring off-line the specific surface area of nanoaerosols. Powder Technol. 200, 190 (2010)

    Google Scholar 

  142. S.C. Brown, V. Boyko, G. Meyers, M. Voetz, W. Wohlleben, Toward advancing nano-object count metrology: a best practice framework. Environ. Health Perspect. 121, 1282 (2013)

    Google Scholar 

  143. C. Motzkus, T. Macé, F. Gaie-Levrel, S. Ducourtieux, A. Delvallee, K. Dirscherl, V.D. Hodoroaba, I. Popov, O. Popov, I. Kuselman, K. Takahata, K. Ehara, P. Ausset, M. Maillé, N. Michielsen, S. Bondiguel, F. Gensdarmes, L. Morawska, G.R. Johnson, E.M. Faghihi, C.S. Kim, Y.H. Kim, M.C. Chu, J.A. Guardado, A. Salas, G. Capannelli, C. Costa, T. Bostrom, Å.K. Jämting, M.A. Lawn, L. Adlem, S. Vaslin-Reimann, Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study. J. Nanoparticle Res. 15, 1 (2013)

    Google Scholar 

  144. S.B. Rice, C. Chan, S.C. Brown, P. Eschbach, L. Han, D.S. Ensor, A.B. Stefaniak, J. Bonevich, A.E. Vladár, A.R. Hight Walker, J. Zheng, C. Starnes, A. Stromberg, J. Ye, E.A. Grulke, Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study. Metrologia 50, 663 (2013)

    Google Scholar 

  145. N.C. Bell, C. Minelli, J. Tompkins, M.M. Stevens, A.G. Shard, Emerging techniques for submicrometer particle sizing applied to Stober silica. Langmuir 28, 10860 (2012)

    Google Scholar 

  146. W. Anderson, D. Kozak, V.A. Coleman, Å.K. Jämting, M. Trau, A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 405, 322 (2013)

    Google Scholar 

Download references

Acknowledgments

This review was supported and partially funded by the European Union Seventh Framework Programme (FP7/2007–2013) under the projects NANoREG (a common European approach to the regulatory testing of nanomaterials), grant agreement 310584, and NanoDefine (development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial), grant agreement n°604347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Mast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mast, J., Verleysen, E., De Temmerman, PJ. (2015). Physical Characterization of Nanomaterials in Dispersion by Transmission Electron Microscopy in a Regulatory Framework. In: Deepak, F., Mayoral, A., Arenal, R. (eds) Advanced Transmission Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-15177-9_8

Download citation

Publish with us

Policies and ethics