In Situ TEM of Carbon Nanotubes


The recognition that in situ TEM can be used as a powerful tool for the dynamic characterization of materials has been widely established. However, with the advent of CCD and direct detection cameras, and the development in electron optics, stage design and fabrication, and recording media, scientists and engineers are now being able to further enhance the capabilities of previous TEM analysis through novel in situ experiments, by observing and recording the behavior of materials in different conditions, such as heating, cooling, stress, light, electric fields, as well as liquid and gas environments. This technique has been critical in understanding and characterizing the relationship between properties and the nano/microstructure of materials and has been important in validating the information contained in previous single static TEM experiments with a series of dynamic sequential images. In addition, the emerging development of nanomaterials, a field which has become one of the most promising fields of science and technology today, has brought an exciting resurgence of interest in in situ TEM, as the previous issue of thinning bulk specimens is no longer present.


Specimen Holder Pole Piece Thermal Chemical Vapor Deposition Chemical Vapor Deposition Growth Resonance Frequency Analysis 



PMFJC is grateful for the financial support from KAUST. PJF acknowledges the support from KAUST for a 2-week research collaboration visit to this institution.


  1. 1.
    C.T. White, T.N. Todorov, Carbon nanotubes as long ballistic conductors. Nature 393(6682), 240–242 (1998)Google Scholar
  2. 2.
    N. Mason, M.J. Biercuk, C.M. Marcus, Local gate control of a carbon nanotube double quantum dot. Science 303(5658), 655–658 (2004)Google Scholar
  3. 3.
    V. Sazonova et al., A tunable carbon nanotube electromechanical oscillator. Nature 431(7006), 284–287 (2004)Google Scholar
  4. 4.
    S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998)Google Scholar
  5. 5.
    E.S. Snow et al., Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717), 1942–1945 (2005)Google Scholar
  6. 6.
    W.Q. Han et al., Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 277(5330), 1287–1289 (1997)Google Scholar
  7. 7.
    L.J. Lauhon et al., Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002)Google Scholar
  8. 8.
    R.F. Egerton et al., Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110(8), 991–997 (2010)Google Scholar
  9. 9.
    R. Sharma, Experimental set up for in situ transmission electron microscopy observations of chemical processes. Micron 43(11), 1147–1155 (2012)Google Scholar
  10. 10.
    V.H. Crespi et al., Anisotropic electron-beam damage and the collapse of carbon nanotubes. Phys. Rev. B. Condens. Matter 54(8), 5927–5931 (1996)Google Scholar
  11. 11.
    P.M. Ajayan, V. Ravikumar, J.C. Charlier, Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81(7), 1437–1440 (1998)Google Scholar
  12. 12.
    A. Krishnan et al., Young’s modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013–14019 (1998)Google Scholar
  13. 13.
    M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678–680 (1996)Google Scholar
  14. 14.
    B.W. Smith, D.E. Luzzi, Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90(7), 3509–3515 (2001)Google Scholar
  15. 15.
    A. Hashimoto et al., Direct evidence for atomic defects in graphene layers. Nature 430(7002), 870–873 (2004)Google Scholar
  16. 16.
    A.C.Y. Liu, R. Arenal, G. Montagnac, In situ transmission electron microscopy observation of keV-ion irradiation of single-walled carbon and boron nitride nanotubes. Carbon 62, 248–255 (2013)Google Scholar
  17. 17.
    S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)Google Scholar
  18. 18.
    B.W. Smith, M. Monthioux, D.E. Luzzi, Encapsulated C-60 in carbon nanotubes. Nature 396(6709), 323–324 (1998)Google Scholar
  19. 19.
    B.W. Smith, M. Monthioux, D.E. Luzzi, Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials. Chem. Phys. Lett. 315(1–2), 31–36 (1999)Google Scholar
  20. 20.
    Z. Liu, K. Suenaga, S. Iijima, Imaging the structure of an individual C-60 fullerene molecule and its deformation process using HRTEM with atomic sensitivity. J. Am. Chem. Soc. 129(21), 6666–6667 (2007)Google Scholar
  21. 21.
    Y. Sato et al., Structures of D-5d-C-80 and I-h-Er3N@C-80 fullerenes and their rotation inside carbon nanotubes demonstrated by aberration-corrected electron microscopy. Nano Lett. 7(12), 3704–3708 (2007)Google Scholar
  22. 22.
    J. Sloan et al., Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 8, 699–700 (1999)Google Scholar
  23. 23.
    G. Brown et al., Electron beam induced in situ clusterisation of 1D ZrCl4 chains within single-walled carbon nanotubes. Chem. Commun. 9, 845–846 (2001)Google Scholar
  24. 24.
    P.M.F.J. Costa et al., Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chem. Mater. 17(26), 6579–6582 (2005)Google Scholar
  25. 25.
    N. Naguib et al., Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett. 4(11), 2237–2243 (2004)Google Scholar
  26. 26.
    Y. Gogotsi, J.A. Libera, M. Yoshimura, Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15(12), 2591–2594 (2000)Google Scholar
  27. 27.
    D. Qian et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)Google Scholar
  28. 28.
    F. Banhart, In-situ electron microscopy at high resolution, vol. vi (World Scientific, Hackensack, 2008). p. 311Google Scholar
  29. 29.
    M. Terrones et al., Coalescence of single-walled carbon nanotubes. Science 288(5469), 1226–1229 (2000)Google Scholar
  30. 30.
    M. Terrones, F. Banhart, N. Grobert et al., Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett 89(7), 075505 (2002)Google Scholar
  31. 31.
    J.X. Li, F. Banhart, The engineering of hot carbon nanotubes with a focused electron beam. Nano Lett. 4(6), 1143–1146 (2004)Google Scholar
  32. 32.
    F. Banhart, J.X. Li, A.V. Krasheninnikov, Carbon nanotubes under electron irradiation: stability of the tubes and their action as pipes for atom transport. Phys. Rev. B 71(24), 241408(R) (2005)Google Scholar
  33. 33.
    Y.J. Gan et al., The diffusion of carbon atoms inside carbon nanotubes. New J. Phys. 10 (2008)Google Scholar
  34. 34.
    K. Urita, K. Suenaga, T. Sugai et al., In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap. Phys. Rev. Lett 94(15), 155502 (2005)Google Scholar
  35. 35.
    G.E. Begtrup, K.G. Ray, B.M. Kessler et al., Probing nanoscale solids at thermal extremes. Phys. Rev. Lett 99(15), 155901 (2007)Google Scholar
  36. 36.
    D.E. Luzzi, B.W. Smith, Carbon cage structures in single wall carbon nanotubes: a new class of materials. Carbon 38(11–12), 1751–1756 (2000)Google Scholar
  37. 37.
    K. Suenaga et al., Evidence for the intramolecular motion of Gd atoms in a Gd-2@C-92 nanopeapod. Nano Lett. 3(10), 1395–1398 (2003)Google Scholar
  38. 38.
    Y.H. Gao, Y. Bando, Carbon nanothermometer containing gallium—Gallium’s macroscopic properties are retained on a miniature scale in this nanodevice. Nature 415(6872), 599–599 (2002)Google Scholar
  39. 39.
    L. Sun et al., Carbon nanotubes as high-pressure cylinders and nanoextruders. Science 312(5777), 1199–1202 (2006)Google Scholar
  40. 40.
    J.A. Rodriguez-Manzo et al., In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nat. Nanotechnol. 2(5), 307–311 (2007)Google Scholar
  41. 41.
    J.A. Rodriguez-Manzo et al., Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proc. Natl. Acad. Sci. U. S. A. 106(12), 4591–4595 (2009)Google Scholar
  42. 42.
    J.A. Rodriguez-Manzo, M.S. Wang, F. Banhart et al., Multibranched junctions of carbon nanotubes via cobalt particles. Adv. Mater 21(44), 4477 (2009)Google Scholar
  43. 43.
    P.M.F.J. Costa et al., Stepwise current-driven release of attogram quantities of copper iodide encapsulated in carbon nanotubes. Nano Lett. 8(10), 3120–3125 (2008)Google Scholar
  44. 44.
    M.E. Toimil-Molares et al., Pipetting nanowires: in situ visualization of solid-state nanowire-to-nanoparticle transformation driven by surface diffusion-mediated capillarity. Adv. Funct. Mater. 22(4), 695–701 (2012)Google Scholar
  45. 45.
    Y. Hayashi et al., High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique. Nanoscale Res. Lett. 7, 1–4 (2012)Google Scholar
  46. 46.
    P.M.F.J. Costa et al., Effect of electron beam irradiation and heating on the structural stability of sulphide-filled carbon nanotubes. Microsc. Microanal. 18, 77–78 (2012)Google Scholar
  47. 47.
    J.R. Jinschek, Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas-solid interactions. Chem. Commun. 50(21), 2696–2706 (2014)Google Scholar
  48. 48.
    S. Helveg et al., Atomic-scale imaging of carbon nanofibre growth. Nature 427(6973), 426–429 (2004)Google Scholar
  49. 49.
    R. Sharma, Z. Iqbal, In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl. Phys. Lett. 84(6), 990–992 (2004)Google Scholar
  50. 50.
    R.T.K. Baker, J.J. Chludzinski Jr., Filamentous carbon growth on nickel-iron surfaces: the effect of various oxide additives. J. Catal. 64(2), 464–478 (1980)Google Scholar
  51. 51.
    R. Sharma et al., In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron Microsc. (Tokyo) 54(3), 231–237 (2005)Google Scholar
  52. 52.
    S. Hofmann et al., In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 7(3), 602–608 (2007)Google Scholar
  53. 53.
    S. Hofmann et al., State of transition metal catalysts during carbon nanotube growth. J. Phys. Chem. C 113(5), 1648–1656 (2009)Google Scholar
  54. 54.
    M. Lin et al., Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett. 6(3), 449–452 (2006)Google Scholar
  55. 55.
    M. Lin et al., Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett. 7(8), 2234–2238 (2007)Google Scholar
  56. 56.
    H. Yoshida, T. Uchiyama, S. Takeda, Direct observation of carbon nanotube growth by environmental transmission electron microscopy. Microsc. Semicond. Mater. 2007 120, 209–212 (2008)Google Scholar
  57. 57.
    H. Yoshida et al., Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 8(7), 2082–2086 (2008)Google Scholar
  58. 58.
    R. Sharma et al., Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures. Nano Lett. 11(6), 2464–2471 (2011)Google Scholar
  59. 59.
    A.L. Koh et al., Observations of carbon nanotube oxidation in an aberration-corrected environmental transmission electron microscope. ACS Nano 7(3), 2566–2572 (2013)Google Scholar
  60. 60.
    P.M.F.J. Costa et al., Imaging the oxidation of ZnS encapsulated in carbon nanotubes. Chemistry 16(39), 11809–11812 (2010)Google Scholar
  61. 61.
    U.K. Gautam et al., Ga-doped ZnS nanowires as precursors for ZnO/ZnGa2O4 nanotubes. Adv. Mater 20(4), 810 (2008)Google Scholar
  62. 62.
    S. Frank et al., Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)Google Scholar
  63. 63.
    J. Cumings, P.G. Collins, A. Zettl, Materials—peeling and sharpening multiwall nanotubes. Nature 406(6796), 586–586 (2000)Google Scholar
  64. 64.
    J.Y. Huang et al., Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. Phys. Rev. Lett. 94(23), 236802 (2005)Google Scholar
  65. 65.
    D. Golberg et al., Nanotubes in a gradient electric field as revealed by STM-TEM technique. Nano Rese. 1(2), 166–175 (2008)Google Scholar
  66. 66.
    T.T. Xu, Z.Y. Ning, T.W. Shi et al., A platform for in-situ multi-probe electronic measurements and modification of nanodevices inside a transmission electron microscope. Nanotechnology 25(22), 225702 (2014)Google Scholar
  67. 67.
    R.P. Gao, Z.W. Pan, Z.L. Wang, Work function at the tips of multiwalled carbon nanotubes. Appl. Phys. Lett. 78(12), 1757–1759 (2001)Google Scholar
  68. 68.
    J. Cumings, A. Zettl, M.R. McCartney et al., Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett 88(5), 056804 (2002)Google Scholar
  69. 69.
    Z.L. Wang et al., In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett. 80(5), 856–858 (2002)Google Scholar
  70. 70.
    Z.L. Wang, In situ electron microscopy for nanomeasurements, in Handbook of microscopy for nanotechnology, ed. by N. Yao, Z.L. Wang (Springer, New York, 2005), p. 731Google Scholar
  71. 71.
    M.S. Wang, Q. Chen, L.M. Peng, Grinding a nanotube. Adv. Mater 20(4), 724 (2008)Google Scholar
  72. 72.
    Q.M. Su et al., In situ TEM study on the electrical and field-emission properties of individual Fe3C-filled carbon nanotubes. J. Phys. Chem. C 116(43), 23175–23179 (2012)Google Scholar
  73. 73.
    M.Z.M. Yusop et al., In situ TEM observation of Fe-included carbon nanofiber: evolution of structural and electrical properties in field emission process. ACS Nano 6(11), 9567–9573 (2012)Google Scholar
  74. 74.
    B.C. Regan et al., Carbon nanotubes as nanoscale mass conveyors. Nature 428(6986), 924–927 (2004)Google Scholar
  75. 75.
    K. Svensson, H. Olin, E. Olsson, Nanopipettes for metal transport. Phys. Rev. Lett 93(14), 145901 (2004)Google Scholar
  76. 76.
    D. Golberg et al., Copper-filled carbon nanotubes: rheostat like behavior and femtogram copper mass transport. Adv. Mater 19(15), 1937 (2007)Google Scholar
  77. 77.
    L.X. Dong et al., Nanorobotic spot welding: Controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7(1), 58–63 (2007)Google Scholar
  78. 78.
    J.Y. Huang, F. Ding, K. Jiao et al., Real time microscopy, kinetics, and mechanism of giant fullerene evaporation. Phys. Rev. Lett 99(17), 175503 (2007)Google Scholar
  79. 79.
    P.M.F.J. Costa et al., Direct imaging of Joule heating dynamics and temperature profiling inside a carbon nanotube interconnect. Nat. Commun. 2, 421 (2011)Google Scholar
  80. 80.
    P.M.F.J. Costa et al., The electrical delivery of a sublimable II-VI compound by vapor transport in carbon nanotubes. Carbon 49(12), 3747–3754 (2011)Google Scholar
  81. 81.
    P.M.F.J. Costa et al., Comparative study of the stability of sulfide materials encapsulated in and expelled from multi-walled carbon nanotube capsules. Carbon 49(1), 342–346 (2011)Google Scholar
  82. 82.
    Z. Fan et al., Metal-filled carbon nanotube based optical nanoantennas: bubbling, reshaping, and in situ characterization. Nanoscale 4(18), 5673–5679 (2012)Google Scholar
  83. 83.
    M.S. Wang et al., Fabrication and electrical and mechanical properties of carbon nanotube interconnections. Adv. Funct. Mater. 15(11), 1825–1831 (2005)Google Scholar
  84. 84.
    C.H. Jin, K. Suenaga, S. Iijima, Plumbing carbon nanotubes. Nat. Nanotechnol. 3(1), 17–21 (2008)Google Scholar
  85. 85.
    M.S. Wang, D. Golberg, Y. Bando, Interface dynamic behavior between a carbon nanotube and metal electrode. Adv. Mater 22(1), 93 (2010)Google Scholar
  86. 86.
    M.S. Wang, D. Golberg, Y. Bando, Superstrong low-resistant carbon nanotube-carbide-metal nanocontacts. Adv. Mater 22(47), 5350 (2010)Google Scholar
  87. 87.
    M. Karita et al., In situ TEM study on the improvement of contact resistance between a carbon nanotube and metal electrodes by local melting. Surf. Interface Anal. 44(6), 674–677 (2012)Google Scholar
  88. 88.
    M. Karita et al., In situ TEM study on changes in structure and electrical conductance of carbon nanotube-gold contact induced by local joule heating. J. Mater. Sci. 48(2), 936–940 (2013)Google Scholar
  89. 89.
    M.S. Wang et al., Cobalt nanoparticle-assisted engineering of multiwall carbon nanotubes. ACS Nano 3(9), 2632–2638 (2009)Google Scholar
  90. 90.
    D.M. Tang et al., Carbon nanotube-clamped metal atomic chain. Proc. Natl. Acad. Sci. U. S. A. 107(20), 9055–9059 (2010)Google Scholar
  91. 91.
    C. Jin, K. Suenaga, S. Iijima, How does a carbon nanotube grow? An in situ investigation on the cap evolution. ACS Nano 2(6), 1275–1279 (2008)Google Scholar
  92. 92.
    K. Jensen, W. Mickelson, W. Han et al., Current-controlled nanotube growth and zone refinement. Appl. Phys. Lett 86(17), 173107 (2005)Google Scholar
  93. 93.
    B.L. Liu et al., Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism. J. Am. Chem. Soc. 133(2), 197–199 (2011)Google Scholar
  94. 94.
    D.M. Tang et al., Structural changes in iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy. ACS Nano 8(1), 292–301 (2014)Google Scholar
  95. 95.
    X.H. Liu et al., In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2(7), 722–741 (2012)Google Scholar
  96. 96.
    Y. Liu et al., Lithiation-induced embrittlement of multiwalled carbon nanotubes. ACS Nano 5(9), 7245–7253 (2011)Google Scholar
  97. 97.
    Q.M. Su et al., In situ transmission electron microscopy investigation of the electrochemical lithiation-delithiation of individual Co9S8/co-filled carbon nanotubes. ACS Nano 7(12), 11379–11387 (2013)Google Scholar
  98. 98.
    Q.M. Su et al., In situ transmission electron microscopy observation of electrochemical sodiation of individual Co9S8-filled carbon nanotubes. ACS Nano 8(4), 3620–3627 (2014)Google Scholar
  99. 99.
    P. Poncharal et al., Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)Google Scholar
  100. 100.
    Z.L. Wang, P. Poncharal, W.A. de Heer, Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. Solid 61(7), 1025–1030 (2000)Google Scholar
  101. 101.
    J. Cumings, A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289(5479), 602–604 (2000)Google Scholar
  102. 102.
    M. Loffler et al., Robust determination of Young’s modulus of individual carbon nanotubes by quasi-static interaction with Lorentz forces. Ultramicroscopy 111(2), 155–158 (2011)Google Scholar
  103. 103.
    K. Enomoto et al., Measurement of Young’s modulus of carbon nanotubes by nanoprobe manipulation in a transmission electron microscope. Appl. Phys. Lett 88(15), 153115 (2006)Google Scholar
  104. 104.
    T. Kuzumaki, Y. Mitsuda, Nanoscale mechanics of carbon nanotube evaluated by nanoprobe manipulation in transmission electron microscope. Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers. 45(1A), 364–368 (2006).Google Scholar
  105. 105.
    T. Kuzumaki, Y. Mitsuda, Characterization of carbon nanotubes by nanoprobe manipulation in transmission electron microscope. Diamond Relat. Mater. 17(4–5), 615–619 (2008)Google Scholar
  106. 106.
    B. Peng et al., Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3(10), 626–631 (2008)Google Scholar
  107. 107.
    M.S. Wang, D. Golberg, Y. Bando, Tensile tests on individual single-walled carbon nanotubes: linking nanotube strength with its defects. Adv. Mater. 22(36), 4071–4075 (2010)Google Scholar
  108. 108.
    P.C. Tsai et al., Buckling characterizations of an individual multi-walled carbon nanotube: insights from quantitative in situ transmission electron microscope nanoindentation and molecular dynamics. Appl. Phys. Lett 103(5), 053119 (2013)Google Scholar
  109. 109.
    P.M.F.J. Costa et al., Effect of crystalline filling on the mechanical response of carbon nanotubes. Carbon 47(2), 541–544 (2009)Google Scholar
  110. 110.
    P.M. Costa, P.B. Cachim, U.K. Gautam et al., The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: I. Data processing for the extraction of the elastic modulus. Nanotechnology 20(40), 405706 (2009)Google Scholar
  111. 111.
    P.M. Costa, P.B. Cachim, U.K. Gautam et al., The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: II. Slenderness ratio and crystalline filling effects. Nanotechnology 20(40), 405707 (2009)Google Scholar
  112. 112.
    A.O. Monteiro, P.M.F.J. Costa, P.B. Cachim, Finite element modelling of the mechanics of discrete carbon nanotubes filled with ZnS and comparison with experimental observations. J. Mater. Sci. 49(2), 648–653 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Physical Sciences and Engineering DivisionKing Abdullah University for Science and TechnologyThuwalSaudi Arabia
  2. 2.Materials Science and Engineering ProgramUniversity of Texas at AustinAustinUSA

Personalised recommendations