Skip to main content

Aberration-Corrected Electron Microscopy of Nanoparticles

  • Chapter
Advanced Transmission Electron Microscopy

Abstract

The early history of scanning transmission electron microscopy (STEM) is reviewed as a way to frame the technical issues that make aberration correction an essential upgrade for the study of nanoparticles using STEM. The principles of aberration correction are explained, and the use of aberration-corrected microscopy in the study of nanostructures is exemplified in order to remark the features and challenges in the use of this measuring technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Nobel Prize in Physics 1986. Nobelprize.org. Nobel Media AB 2014. Web, http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/. Accessed 6 Feb 2015

    Google Scholar 

  2. M. Knoll, E. Ruska, Das Elektronenmikroskop (The electron microscope). Z. Phys. 78, 318–339 (1932), submitted 16 June 1932

    Google Scholar 

  3. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, Berlin, 2009)

    Book  Google Scholar 

  4. C.T. Koch, Determination of core structure periodicity and point defect density along dislocations. ProQuest Dissertations and Theses; Thesis (PhD)–Arizona State University, 2002. Publication Number: AAI3042580; ISBN: 9780493562612; Source: Dissertation Abstracts International, vol 63–02, Section: B, pp. 0846. 214 (2002) pp. 1–175

    Google Scholar 

  5. J. Weertman, J.R. Weertman, Elementary Dislocation Theory (Mac Millan, New York, 1964)

    Google Scholar 

  6. J.M. Cowley, A.F. Moodie, The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–619 (1957). See also J. Cowley, Diffraction Physics (North Holland, Amsterdam, 1981)

    Google Scholar 

  7. S. Ijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  8. J.F. Enders, T.H. Weller, F.C. Robbins, Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 109, 85–87 (1949)

    Article  Google Scholar 

  9. M. Adrian, J. Dubochet, J. Lepault, A.W. McDowall, Cryo-electron microscopy of viruses. Nature 308, 32–36 (1984)

    Article  Google Scholar 

  10. L.F. Kourkoutis, J.M. Plitzko, W. Baumeister, Electron microscopy of biological materials at the nanometer scale. Annu. Rev. Mater. Res. 42, 33–58 (2012)

    Article  Google Scholar 

  11. P.W. Hawkes (ed.), Advances in Imaging and Electron Physics, vol 182 (Academic Press, San Diego, 2014), pp. 1–94

    Google Scholar 

  12. A. Howie, Aberration correction: zooming out to overview. Phil. Trans. R. Soc. A 367, 3859–3870 (2009)

    Article  Google Scholar 

  13. H.H. Rose, Historical aspects of aberration correction. J. Electron Microsc. 58, 77–85 (2009)

    Article  Google Scholar 

  14. P.W. Hawkes, Aberration correction past and present. Phil. Trans. R. Soc. A 367, 3637–3664 (2009)

    Article  Google Scholar 

  15. Richard Feynman gave a classical talk on December 29th 1959 at the annual meeting of the American Physical Society at the California Institute of Technology (Caltech) was first published in Caltech Engineering and Science, vol 23, 5 Feb 1960, pp 22–36. It has been made available on the web at http://www.zyvex.com/nanotech/feynman.html with their kind permission. The scanned original is available

    Google Scholar 

  16. E.S. Reich, Imaging hits noise barrier. Nature 499, 135–136 (2013)

    Article  Google Scholar 

  17. S. Ulemann, H. Müller, P. Hartel, J. Zach, M. Haider, Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys. Rev. Lett. 111, 046101 (2013)

    Article  Google Scholar 

  18. S.J. Pennycook, S.V. Kalinin, Microscopy: Hasten high resolution. Nature 515, 487–488 (2014)

    Article  Google Scholar 

  19. R. Erni, Aberration Corrected Imaging in Transmission Electron Microscopy: An Introduction (Imperial College Press, London, 2010)

    Book  Google Scholar 

  20. M. Lentzen, Contrast transfer and resolution limits for sub-angstrom high-resolution transmission electron microscopy. Microsc. Microanal. 14, 16–26 (2008)

    Article  Google Scholar 

  21. M. von Ardenne, Electronic-optical device. U.S. Patent 2,257,774, filed 15 Feb 1938, and issued 7 Oct 1941

    Google Scholar 

  22. M. von Ardenne, Das Elektronen-Rastermikroskop. Praktische Ausführung. Z. Tech. Phys. 19, 407–416, as reproduced in S.J. Pennycook, P.D. Nellist, Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011)

    Google Scholar 

  23. V.E. Cosslett, Possibilities and limitations for the differentiation of elements in the electron microscope. Lab. Invest. 14, 1009–1019 (1965)

    Google Scholar 

  24. A.V. Crewe, Scanning electron microscopes: is high resolution possible? Science 154(3750), 729–738 (1966)

    Article  Google Scholar 

  25. A.V. Crewe, J. Wall, L.M. Welter, A high‐resolution scanning transmission electron microscope. J. Appl. Phys. 39(13), 5861–5868 (1968)

    Article  Google Scholar 

  26. J. Wall et al., Scanning transmission electron microscopy at high resolution. Proc. Natl. Acad. Sci. U. S. A. 71(1), 1–5 (1974)

    Article  Google Scholar 

  27. L.Y. Chang, A.I. Kirkland, J.M. Titchmarsh, On the importance of fifth-order spherical aberration for a fully corrected electron microscope. Ultramicroscopy 106, 301–306 (2006)

    Article  Google Scholar 

  28. M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar, R.L. Whetten, Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 101, 3706–3712 (1997)

    Article  Google Scholar 

  29. M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Gronbeck, H. Hakkinen, A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U. S. A. 105, 9157–9162 (2008)

    Article  Google Scholar 

  30. A. Dass, P. Ninmala, V. Jupally, N. Kothalawa, Au103(SR)45, Au104(SR)45, Au104(SR)46 and Au105(SR)46 nanoclusters. Nanoscale 5, 12082–12085 (2013)

    Article  Google Scholar 

  31. A. Dass, Nano-scaling law: geometric foundation of thiolated gold nanomolecules. Nanoscale 4, 2260–2263 (2012)

    Article  Google Scholar 

  32. Y. Negishi, N.K. Chaki, Y. Shichibu, R.L. Whetten, T. Tsukuda, Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. J. Am. Chem. Soc. 129, 11322–11323 (2007)

    Article  Google Scholar 

  33. C. Kumara, C.M. Aikens, A. Dass, X-ray crystal structure and theoretical analysis of Au25–x Ag x (SCH2CH2Ph)18–alloy. J. Phys. Chem. Lett. 5, 461–466 (2014)

    Article  Google Scholar 

  34. W. Krakow, M. Jóse-Yacamán, J.L. Aragón, Observation of quasimelting at the atomic level in Au nanoclusters. Phys. Rev. B 49, 10591–10596 (1994)

    Article  Google Scholar 

  35. D.J. Smith, A.K. Petford-Long, L.R. Wallenberg, J.O. Bovin, Dynamic atomic-level rearrangements in small gold particles. Science 233, 872–875 (1986)

    Article  Google Scholar 

  36. P.M. Ajayan, L.D. Marks, Experimental evidence for quasimelting in small particles. Phys. Rev. Lett. 63, 279–282 (1989)

    Article  Google Scholar 

  37. R.F. Egerton, F. Wang, P.A. Crozier, Beam-induced damage to thin specimens in an intense electron probe. Microsc. Microanal. 12, 65–71 (2006)

    Article  Google Scholar 

  38. M. Malac, M. Beleggia, R. Egerton, Y. Zhu, Bright-field TEM imaging of single molecules: dream or near future? Ultramicroscopy 107, 40–49 (2007)

    Article  Google Scholar 

  39. G. van Tendeloo, S. Bals, S. Van Aert, J. Verbeeck, D. van Dyck, Advanced electron microscopy for advanced materials. Adv. Mater. 24, 5655–5675 (2012)

    Article  Google Scholar 

  40. S.J. Pennycock, P.D. Nelist (eds.), Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011), p. 762

    Google Scholar 

  41. A. De Backer, G. Martinez, A. Rosenauer, S. Van Aert, Atom counting in HAADF STEM using a statistical model-based approach: methodology, possibilities, and inherent limitations. Ultramicroscopy 134, 23–33 (2013)

    Article  Google Scholar 

  42. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Standardless atom counting in scanning transmission electron microscopy. Nano Lett. 10, 4405–4408 (2010)

    Article  Google Scholar 

  43. R. Egerton, Control of radiation damage in the TEM. Ultramicroscopy 127, 100–108 (2013)

    Article  Google Scholar 

  44. M. Azubel, J. Koivisto, S. Malola, D. Bushnell, G.L. Hura, A.L. Koh, H. Tsunoyama, T. Tsukuda, M. Pettersson, H. Häkkinen, Electron microscopy of gold nanoparticles at atomic resolution. Science 345, 909–912 (2014)

    Article  Google Scholar 

  45. G. Tang, L. Peng, P.R. Baldwin, D.S. Mann, W. Jiang, I. Rees, S.J. Ludtke, EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007)

    Article  Google Scholar 

  46. D. Bahena, N. Bhattarai, U. Santiago, A. Tlahuice, A. Ponce, S.B. Bach, B. Yoon, R.L. Whetten, U. Landman, M. Jose-Yacaman, STEM electron diffraction and high-resolution images used in the determination of the crystal structure of the Au144(SR)60 cluster. J. Phys. Chem. Lett. 4, 975–981 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This project was supported by grants from the National Center for Research Resources (5 G12RR013646-12) and the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health. In addition, the authors would like to acknowledge the support of the Welch Foundation grant No. AX-1615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel José Yacamán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yacamán, M.J., Santiago, U., Mejía-Rosales, S. (2015). Aberration-Corrected Electron Microscopy of Nanoparticles. In: Deepak, F., Mayoral, A., Arenal, R. (eds) Advanced Transmission Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-319-15177-9_1

Download citation

Publish with us

Policies and ethics