Advertisement

A Tool-Based Methodology to Analyze Social Network Interactions in Cultural Fields: The Use Case “MuseumWeek”

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8852)

Abstract

The goal of this paper is to present a tool-based methodology which has been developed to analyze messages sent on the Twitter social network. This methodology implements quantitative and qualitative analyses, which were benchmarked with the “MuseumWeek” event.

Keywords

Cultural mediation Twitter Machine learning categorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: ACL, Workshop on Language in Social Media, pp. 30–38 (2011)Google Scholar
  2. 2.
    Ballé, C.: Mussées, changement et organisation. Culture et Musées 2, 17–33 (2003)CrossRefGoogle Scholar
  3. 3.
    Benhamou, F.: L’economie de la culture. La Découverte, Paris (2000)Google Scholar
  4. 4.
    Bollen, J., Mao, H., Zeng, X.: Election Forecasts with Twitter: How 140 Characters Reflect the Political Landscape. Journal of Computational Science 2–1, 1–8 (2011)CrossRefGoogle Scholar
  5. 5.
    Bouquillion, P., Miège, B., Moeglin, P.: L’industrialisation des biens symboliques. Les industries créatives en regard des industries culturelles. PUG, Grenoble (2013)Google Scholar
  6. 6.
    Bouquillion, P.: Concentration, financiarisation et relations entre les industries de la culture et industries de la communication. Revue française des SIC (2012)Google Scholar
  7. 7.
    Courtin, A.: Information visualization and data collection: a challenge to analyze the actions of cultural institution professionals on social networks. In: Museums and the Web 2015 (submitted 2015)Google Scholar
  8. 8.
    Ellison, N., Boyd, D.: The Oxford Handbook of Internet Studies. Oxford University Press (2007)Google Scholar
  9. 9.
    Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The Rise of social Bots. Tech. Rep. 1407.5225, arXiv (2014)Google Scholar
  10. 10.
    Grinter, R.E., Aoki, P.M., Hurst, A.S.M.H., Thornton, J.D., Woodruff, A.: Revisiting the visit: Understanding how technology can shape the museum visit. In: Association for Computing Machinery Conference on Computer Supported Cooperative Work, pp. 146–155. ACM press, New Orleans, LA (2002)Google Scholar
  11. 11.
    Johnson, L., al.: The NMC Horizon Report: 2012, 2013, Museum Edition. The New Media Consortium, Austin, Texas (2012)Google Scholar
  12. 12.
    Juanals, B.: Médiation culturelle et circulation des connaissances à l’ère numérique : information institutionnelle, pratiques éditoriales, pratiques informationnelles et dispositifs socio-techniques. Tech. rep., University Paris Ouest Nanterre La Défense, Labex "Les passés dans le présent (2013)Google Scholar
  13. 13.
    Juanals, B.: Museums as Reterritorialization Spaces in the Digital Age: between Knowledge Publishing and Institutional Communication. Journal of Inclusive Museum p. 8 (Accepted 2014)Google Scholar
  14. 14.
    Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: The good the bad and the OMG! In: fifth international conference on weblogs and social media (2011)Google Scholar
  15. 15.
    Lin, Y., Keegan, B., Margolin, D., Lazer, D.: Rising tides or rising stars?: Dynamics of shared attention on Twitter during media events. CoRR abs/1307.2785(5), 127–165 (2013)Google Scholar
  16. 16.
    Makhoul, J., Scwartz, R., Weischdel, R.: Performance Measures for Information Extraction. In: DARPA Broadcast News Workshop, pp. 249–252 (1999)Google Scholar
  17. 17.
    Millerand, F., Proulx, S., Rueff, J.: Web social. Mutation de la communication. Presses de l’université du québec edn (2010)Google Scholar
  18. 18.
    O’Connory, B., Balasubramanyan, R., Routledge, B., Smithy, A.: From Tweets to Polls : Linking Text Sentiment to Puvlic Opinion Time Series. In: 48th International AAI Conference on Weblogs and Social Media (2010)Google Scholar
  19. 19.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC 2010, pp. 1320–1326 (2010)Google Scholar
  20. 20.
    Pang, B., Lee, L.S.V.: Thumbs up? Sentiment Classification Using machine Learning Techniques. In: ACL-02 Conference on Empirical Methods in Natural language Processing, pp. 79–86 (2002)Google Scholar
  21. 21.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake Shakes Twitter Users : Real-time Event Detection by Social Sensors. In: 19th International Conference on World Wide Web, pp. 851–860 (2010)Google Scholar
  22. 22.
    Seminck, O.: Prototype d’un Classifieur de Tweets à Buts Communicatifs. Tech. rep., University Paris Ouest Nanterre La Défense (2014)Google Scholar
  23. 23.
    Thelwall, M., Buckley, K., Paltoglou, C.D., Kappas, A.: Sentiment Strength Detection for the Social Web. Journal of the American Society for Information Science and Technology 63(1), 163–176 (2010)CrossRefGoogle Scholar
  24. 24.
    Tobelem, J.M.: De l’approche marketing dans les musées. Culture et Musées 2, 49–70 (1992)Google Scholar
  25. 25.
    Tumasjan, A., Sprenger, O., Sandne, R.P., Welpe, M.: Election Forecasts with Twitter: How 140 Characters Reflect the Political Landscape. Social Science Computer Review 29–4, 402–418 (2011)CrossRefGoogle Scholar
  26. 26.
    Watkins, J., Russo, A.: New media design for cultural institutions. In: Proceedings of the 2005 conference on Designing for User eXperience. AIGA: American Institute of Graphic Arts (2005)Google Scholar
  27. 27.
    Weilenmann, A., Hillman, T., Jungselius, B.: Instagram at the museum: Communicating the museum experience through social photo sharing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 1843–1852. ACM, New York, NY, USA (2013). http://doi.acm.org/10.1145/2470654.2466243
  28. 28.
    Welfare, T., Lampos, V., Cristiani, N.: Effects of the Recession on Public Mood in the UK. In: 21st International Conference Companion on World Wide Web, pp. 1221–1226 (2012)Google Scholar
  29. 29.
    Zimmer, M., Proferes, J.: A topology of Twitter research: disciplines, methods, and ethics. Journal of the American Society for Information Science and Technology 66–3, 250–261 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Labex Les Passés dans le présentNanterreFrance
  2. 2.MoDyCoUniversité Paris Ouest Nanterre La DéfenseNanterreFrance

Personalised recommendations