Steam Generators

  • Nikolay Ivanov KolevEmail author


The art in the steam generator design is by having specified primary fluid temperature, pressure and mass flow to design a vapor production with the lowest possible content on droplets at highest possible pressure and mass flow. On this way technical discoveries like introduction of economizers, redirection of separated water into the natural circulation loop using appropriate low pressure loss high efficiency separators etc. are inevitable.


Nuclear Power Plant Critical Heat Flux Feed Water Blow Down Reactor Pressure Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APR1400 Advanced power reactor 1400 (August 10, 2009a),
  2. APR1400, Plant Description, Korea Hydro & Nuclear Power (2009b),
  3. AREVA, EPR, Areva brochure (2007)Google Scholar
  4. AREVA, ATMEA1, Relible generation III+ solution world wide, AREVA brochure (2009) Google Scholar
  5. ATMEA1 ATMEA1 – The mid-sized Generation III+ PWR you can rely on, Conference ETE – Siófok – Hungary (June 3, 2009) Google Scholar
  6. Aubry, S., Cahouet, J., Nicolas, G., Niedergang, C.: A finite volume approach for 3D two phase flows in tube bundles the THYC code. In: Proceedings of the Fourth International Topical Meeting an Nuclear Reactor Thermal – Hydraulics, pp. 1247–1253 (1989) B&W (2009)Google Scholar
  7. Barré, B.: Futur du Nucléaire Nucléaire du Futur, Séminaire SLC (January 2006)Google Scholar
  8. Bergunker, V.D.: 7th International Seminar on Horizontal Steam Generators, Podolsk, pp. 70–87 (2006)Google Scholar
  9. Bibusmetals (2010),
  10. Böck, H.: WWER/ VVER (Soviet designed Pressurized Water Reactors Reactors), Lecture module 04, Vienna University of Technology, Austria (2009)Google Scholar
  11. Bussy, B., Dague, G., Slama, G.: Starting up of new steam generator on N4 1450 MWe plants. In: Proc. 3th International Conference Steam Generators and Heat Exchanger, Toronto, Ontario, Canada (1998)Google Scholar
  12. Carlucci, L.N., et al.: Thermal hydraulic analysis of the Westinghouse Model 51 steam Generator, EPRI NP2683 (1982)Google Scholar
  13. Carson, W.R., Williams, H.K.: Methods of reducing carry-over and reducing pressure drop through steam separators, EPRI Final Report NP1607 (November 1980)Google Scholar
  14. Clement, R.: PWRs Systems and Operation (August 9, 2009)Google Scholar
  15. Chisholm, D.: Two phase flow in pipelines and heat exchangers. George Godwin, London (1983)Google Scholar
  16. Cumo, M., Naviglio, A. (eds.): Thermal hydraulic design of components for steam generation plants. CRC Press, Inc., Boca Raton (1991)Google Scholar
  17. Cummins, E.: CSIS Nuclear Conference (June 26, 2008) Google Scholar
  18. Dagnall, S.: AP1000 Technology for today’s market practical options for a nuclear renais-sance Institute of Physics, London (June 13, 2006) Google Scholar
  19. Daehnerst, B.: The Westinghouse AP1000 reactor – and overview, Schweizerische Geselschaft der Kernfachleute (March 6, 2007)Google Scholar
  20. Doosan Heavy Industries & Construction, Creating values for the world nuclear power plants (2009) Google Scholar
  21. Doosan: Steam Generator, Doosan Heavy Industries & Construction, DH0604 (2009b),
  22. Dragunov, Y., Ryzhov, S., Mokhov, V.: Development of WWER-1200 reactor plant for NPP of large series NPP-2006 (March 8, 2007) Google Scholar
  23. Dueymes, E.: Wet steam flows in industrial large-diameter pipes: flow rate, moisture and pressure drop measurements. Int. J. Multiphase Flow 6(6), 901–909 (1989)CrossRefGoogle Scholar
  24. EPR, The European Pressurized Water Reactor called EPR, Nuclear Engineering International (October 1997)Google Scholar
  25. EPR, Druckwasserreaktor 1600 MWe (EPR) Kernkraftwerk Olkiluoto 3, Finnland, Funktionsbeschreibung mit Poster, Broshure, Bestell-Nr.: ANP:G-46-V2-07-GER Printed in Germany 500115H WS 03076. K.-Nr. 309 (2009) Google Scholar
  26. Fournier, R., Thibodeau, M., French, C.T.: Measurement of steam generator or reactor ves-sel moisture carryover using a non-radioactive tracer. In: Proc. of the 17th Int. Conf. on Nuclear Engineering, ICONE17, Brussels, Belgium, July 12-16 (2009)Google Scholar
  27. Fortino, R.T., Oberjohn, W.J., Rice, J.G., Cornelius, D.K.: Thermal-Hydraulic Analyses of Once Through Steam Generators. EPRI NP-1431 (1980)Google Scholar
  28. Gautier, D., Boissier, A.: Les pertes de charges et le transfert thermique cote gaz dans les échangeurs tubes lisses, a circulations orthogonales. Bulletin de la Direction des Etudes et Recherches d’EDF no. 2/3 (1971) Google Scholar
  29. Gluhov, G.: Jadreni energiyni reactori, Tehnika, Sofia, Bulgaria (1979) Google Scholar
  30. Green, S.J.: Thermal hydraulic and corrosion aspects of PWR steam generator problems. Heat Trans. Eng. 9, 1 (1988)CrossRefGoogle Scholar
  31. Green, S.J., Hetstroni, G.: PWR steam generators. Int. J. of Multiphase Flow 21(suppl.), 1–97 (1995)CrossRefGoogle Scholar
  32. Groeneveld, D.C.: Post-dryout heat transfer at reactor operating conditions. In: Nat. Topical Meet. Water Reactor Safety, Salt Lake City, Utah, American Nuclear Society, Conf. 730304, Rept. AECL-4513, March 26-28, Atomic Energy of Canada Ltd (1977)Google Scholar
  33. Groeneveld, D.C., et al.: The 1995 look-up table for critical heat flux in tubes. Nuclear Engineering and Design 163, 1–23 (1996)CrossRefGoogle Scholar
  34. Groeneveld, D.C., Shan, J.Q., Vasi, A.Z., Leung, L.K.H., Durmayaz, A., Yang, J., Cheng, S.C., Tanase, A.: The 2005 CHF look-up table. In: The 11th Int. Top. Meeting on Nu-clear Thermal-Hydraulics (NURETH 2011), Avignon, France, October 2-6 (2005)Google Scholar
  35. Gouirand, J.M.: CLOTAIRE Program – Thermal hydraulic test results in the straight part of the tube bundle. CEA/DTE/STRE/LGV/89/89/961 1 & 2 (1989) Google Scholar
  36. Gouirand, J.M.: CLOTAIRE International Program – Final report – part 1 – Thermalhy-draulic, CEA/DER/SCC/LTDE/91 /012 (1991) Google Scholar
  37. Hassan, Y.A., Morgan, C.D.: Steady-state and transient prediction of a 19-tube oncethrough steam generator using RELAP5/MODI. Nucl. Tech. 60, 143–150 (1980)Google Scholar
  38. Hassan, Y.A., Morgan, C.D.: Comparison of Lehigh 3 × 3 rod bundle post-CHF data with the predictions of RELAP5/MOD2. In: American Nuclear Society and Atomic Indus-trial Forum Joint Meeting, Washington, DC (1986)Google Scholar
  39. IAEA-21, WWER-1000 reactor simulator, Workshop material. International Atomic En-ergy Agency, Training course series No. 21 (2003) Google Scholar
  40. INR: Russian scientific centre “Kurtschatov Institute”, Institute of Nuclear Reactors (2009),
  41. John, B., Dharne, S.P., Ghadge, S.G.: Evolution of 434 MWth steam generator to 540 MWth. In: The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11) Paper: 332 Popes’ Palace Conference Center, Avignon, France, October 2-6 (2005) Google Scholar
  42. Keeton, L.W., Singhal, A.K., Irani, A.: A THOS3 code analysis of tube plugging effects an the thermal-hydraulic characteristics of a once-through steam generator. ASME 86-WA/NE-4 (1986) Google Scholar
  43. Keeton, L.W., Singhal, A.K., Srikantiah, G.: ATHOS3: A computer program for thermal-hydraulic analysis of steam generators. vol. 1: Mathematical und Physical Models und Method of Solution; vol. 2: Programmer’s Manual; vol. 3: User’s Manual. EPRI NP 4604-CCM, vol. 1-3, Revision 1 (1990) Google Scholar
  44. Lee, J.Y., No, H.C.: Three-dimensional two-fluid code for U-tube steam generator thermal design analysis. In: Proc. 2nd International Topical Meetings an Nuclear Power Plant Thermal Hydraulics and Operations, Tokyo, Japan, pp. 3-21 –3-27 (April 1986)Google Scholar
  45. Lukasevich, B.I., Trunov, N.B., Likasevich, B.I., Dragunov, Y.G., Dividenko, S.E.: Steam generators for VVER reactor facilities for nuclear power plants. IKTs Akademkniga, Moscow (2004)Google Scholar
  46. Maddox, J., Koontz, F.: WATTS BAR Nuclear Power Plant Fundamentals Workshop (July 10, 2000)Google Scholar
  47. Margulowa, T.C.: Kernkraftwerke, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1976) Google Scholar
  48. Miheev, M.A., Miheeva, I.M.: Osnovy teploperedachi, Energiya, Moskva (1973) Google Scholar
  49. MNP Molybdenum and Nuclear Power – Part II (2009),
  50. NNF. Nuclear News Flashes. McGraw-Hill Companies, Inc. (September 28, 2011) Google Scholar
  51. Patankar, S.V., Spalding, D.B.: A calculation procedure for the transient and steady state behavior of shell-and-tube heat exchangers. Heat Exchanger Design and Theory Source Book, Scripta, Washington, DC (1976) Google Scholar
  52. OKB, Reactor facilities for AES with VVER-1000 (2008) Google Scholar
  53. Paulson, K.: Design Feature of US-APWR for Global Deployment, UAP-HF-07115 (July 21, 2008)Google Scholar
  54. Pioro, I.L., Duffey, R.B.: Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power-Engineering Applications. Elsevier, Amsterdam (2007) Google Scholar
  55. Prasser, H.-M.: Reactor technology: Complex 1 Design of Light Water Reactors, Lecture notes – an Internet publication, Eidgenössische Technische Hochschule Zürich, Swiss Federal Institute of Technology Zürich (2009) Google Scholar
  56. Preuß, H.-J.: Entwiklingstendenzen und Zukunftsaufsichten. In: Oldekop, W. (ed.) Druckwasserreaktoren für Kernkraftwerke, ch. 14, p. 348. Verlag Karl Thiemig, München (1974) Google Scholar
  57. Procaccia, H., et al.: Tests of types 51A and 51M steam generators at Bugey-4 and Tricastin-1 Nuclear Power Plants, EPRI NP-2689 (1982) Google Scholar
  58. PWR, Pressurized water reactor, Siemens Brochure, Order No. A19100-U01-A148-V1- 7600, Germany (March 1992) Google Scholar
  59. Riboud, P.M., Brugeille, G.: Validation expérimentale du calcul thermo hydraulique bidimensionnel des échangeurs tubulaires. In: 22rad IAHR Congres, Lausanne, Switzerland, August 31-September 4 (1987) Google Scholar
  60. RPWR, Russian pressurized water reactors VVER-440 & VVER-1000, internet publication (2009) Google Scholar
  61. Rütz, J.: Messung der Frischdampffeuchte nach dem Drosselverfahren, Kernenergie, Jahrgang 16 Heft 1 S, 13–19 (1973) Google Scholar
  62. Rust, J.H., Weaver, L.E.: Nuclear power safety. Pergamon Press, New York (1976) Google Scholar
  63. Ryjkov, S.B., et al.: New projects for VVER power plants of medium size, International fo-rum Atomexpo 2009, Moscow, CVK Expocenter (2009), (in Russian), Рыжов С.БGoogle Scholar
  64. Мохов В.А., Никитенко М.П., Четвериков А.Е., Щекин И.Г.: Новые проекты реакторных установок ВВЭР средней мощности, Международный форум «АТОМЭКСПО 2009» г. Москва, ЦВК «Экспоцентр (мая 26-28, 2009) Google Scholar
  65. SGSS Steam Generators and Steam Separators (2009) Google Scholar
  66. Singhal, A.K., Keeton, L.W., Srikantiah, G.: Thermal-Hydraulic Analysis of U-Tube and Once Through Steam Generators. In: AIChE Symposium Series 225, vol. 79, p. 331 (1983)Google Scholar
  67. Singhal, A.K., Keeton, L.W., Przekwas, A.J., Weems, J.S.: ATHOS A Computer Program for Thermal Hydraulic Analysis of Steam Generators, vol. 4: Applications, EPRI NP-2698-CCM (1984) Google Scholar
  68. Singhal, A.K., Srikantiah, G.: A review of thermal hydraulic analysis methodology for PWR steam generators and ATOS3 code applications. Prog. Nucl. Energy 25(1), 7–70 (1991)CrossRefGoogle Scholar
  69. Schwarz, T., Bouecke, R.: Utilization of the ATHOS code for split flow economizer and flow distribution plate calculations of steam generators. In: ASME Winter Annual Meeting Proc. HTD, vol. 51, pp. 57–69 (1985)Google Scholar
  70. Smolin, V.N., Shpanskii, S.V., Esikov, V.I., Sedova, T.K.: Method of calculating burnout in tubular fuel rods when cooled by water and a water-steam mixture. Teploenergetika 24(12), 30–35 (1977)Google Scholar
  71. Solomon, Y., Paine, J.P.N., Steininger, D.A., Williams, C.L.: Principles of steam generator degradation. In: Steam Generator Reference Book, ch. 5. EPRI (1985) Google Scholar
  72. Ramu, K., Weisman, J.: A method for the correlation of transition boiling heat transfer data. In: 1974 5th Int. Heat Transfer Conf., Tokyo, vol. 4, pp. 160–164 (1974)Google Scholar
  73. Ryjkov, S.B., et al.: New projects for VVER power plants of medium size, International forum Atomexpo 2009, Moscow, CVK Expocenter, in Russian: Рыжов С.Б., Мохов Google Scholar
  74. В.А., Никитенко М.П., Четвериков А.Е., Щекин И.Г. (мая 26-28, 2009) Новые проекты реакторных установок ВВЭР средней мощности, Международный форум, АТОМЭКСПО 2009, г. Москва, ЦВК, Экспоцентр (2009) Google Scholar
  75. Trunov, N.B., Denisov, W., Kharchenko, S.A., Likasevich, B.I.: Taking account of operat-ing experience when developing new designs for steam generators for nuclear power plants with VVER. Teploenergetica (1), 38–42 (2006)Google Scholar
  76. Trunov, N.B., Likasevich, B.I., Veselov, D.O., Yu, G.: Steam generators – horizontal or vertical (which type should be used in nuclear power plants with VVER?). Atomic Energy 105(3), 165–174 (2008), translated from Atomnaya Energiya 105(3), 127–135 (2008)Google Scholar
  77. US-APWR Nuclear Energy Systems Business Presentation Meeting Business Meeting Document 1, Nuclear Energy Systems Headquarters, Nuclear Headquarters Mitsubishi Heavy Industries (July 23, 2007d)Google Scholar
  78. VVER-640, Reactor Plant with WWER-640 (V–407) for New Generation NPP Power Units (2009),
  79. VVER-1500 Reactor Plant with WWER-1500 (V–448) for New Generation NPP Power Units (2009),
  80. Wade, K.: Steam generation degradation and impact on continued operation of pressurized water reactors in the United States, Energy Information Administration. Electric Power Monthly, pp IX–XXI (August 1995) Google Scholar
  81. Wang, S.S., Srikantiah, G.: Numerical modeling of the phase separation processes in BWR and PWR steam separators. In: AIChE Symp. Series, vol. 81, p. 245 (1985) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ErlangenGermany

Personalised recommendations