Core Thermal Hydraulics

  • Nikolay Ivanov Kolev


After a short review of existing nuclear reactor pressure vessels and core geometry this chapter summarizes the main ideas on how to perform a thermohydraulic analysis of boiling flows in nuclear reactors. Remarkable is that all known three-fluid flow patterns and heat transfer mechanisms create the cooling mechanism of the core. To demonstrate the achievable accuracy using gross discretization I simulate 333 three-dimensional tests on bundles with 1, 16, 25, and 36 heated rods, seven different bundles with 64 heated rods from different laboratories: 273 3D experiments on six bundles for critical heat flux, 54 3D experiments on seven bundles for void fraction, two 3D experiments on a bundle for transients and four 1D experiments on a subchannel for transients. The mass flow rates and the pressure in these tests varied from 3 to 2000 kg/(m² s) and from 1 to 200 bar, respectively. The subcooling was less than 140 K and the thermal power varied from some tenths of a kilowatt to 7 MW. Comparison with the results of other authors is made and a discussion is provided.


Mass Flow Rate Void Fraction Fuel Assembly Critical Heat Flux Annular Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlinder, S., Tinoco, H.: CFD analysis of recombination by HWC in the down comer of a BWR. In: 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-2012), Sheraton Station Square, Pittsburgh, Pennsylvania, USA, Log Number: 156, September 30–October 4 (2007)Google Scholar
  2. Akiyama, Y., Hori, K., Miyazaki, K., Nishioka, H., Sugiyama, S.: Evaluation of the bundle void fraction measurement data of PWR fuel assembly. In: 3rd JSME/ASME Joint International Conference on Nuclear Engineering, Kyoto International Conference Hall, Kyoto, Japan, April 23–27, vol. 1, pp. 211–216 (1995)Google Scholar
  3. Akiyama, Y., Hori, K., Miyazaki, K., Nishioka, H., Sugiyama, S.: Pressurized water reactor fuel assembly subchannel void measurement. Nucl. Technol. 112, 412–421 (2005)Google Scholar
  4. Ambrosini, W., Andreussi, P., Azzopardi, B.J.: A physically based correlation for drop size in annular flow XE “annular flow”. Int. J. Multiphase Flow 17(4), 497–507 (1991)CrossRefzbMATHGoogle Scholar
  5. Anglart, H., Nylund, O.: CFD application to prediction of void distribution in two phase bubbly flow in rod bundles. Nucl. Eng. Des. 163, 81–98 (1996)CrossRefGoogle Scholar
  6. Anklama, T.M., Miller, R.F.: Void fraction under high pressure, low flow conditions in rod bundle geometry. Nucl. Eng. Des. 75, 99–108 (1982)CrossRefGoogle Scholar
  7. Aounallah, Y., Coddington, P.: Assessment of VIPRE-02 void fraction prediction against NUPEC experimental BWR data. In: 9th International Topical Meeting on Nuclear Thermal Hydraulics (NUTETH-1999), San Francisco, California, October 3–8 (1999)Google Scholar
  8. Azodi, D., Elsert, P., Gruner, P., Jendrch, U., Kuntze, W.M.: Verifizierug und internationaler Vergleich von Struckturanalyse-methoden zur Beschreibung des Verhaltens des Reaktordruckbehälters bei Belastung jenseits der Auslegungsgrenzen, GRSmbH, GRS-A-2338 (February 1996)Google Scholar
  9. Barbosa, J.R., Hewitt, G.F., König, G., Richardson, S.M.: Liquid entrainment, droplet concentration and pressure gradient at the onset of annular flow in vertical pipe. Int. J. Multiphase Flow 28, 943–961 (2002)CrossRefzbMATHGoogle Scholar
  10. Baroczy, C.J.: A systematic correlation for two-phase pressure drop. Chem. Eng. Progr. Symp. Ser. 62(64), 232–249 (1966)Google Scholar
  11. Bennett, A.W., et al.: Heat transfer to steam-water mixtures flowing in uniformly heated tubes in which the critical heat flux has been exceeded, AERE-R5373 (1967)Google Scholar
  12. Bobkov, V.P.: The table for critical heat-flux densities in square fuel-rod assemblies. Therm. Eng. 50(11), 952–957 (2003)Google Scholar
  13. Chandesris, M., Serre, G. Sagaut, P.: A macroscopic turbulence model for flow in porous media suited for channel, pipe and rod bundle flows. In: 4th International Conference on Computational Heat and Mass Transfer, Paris (2005)Google Scholar
  14. Chisholm, D.: Two-phase flow in pipelines and heat exchangers, George Godwin, London, p. 110 (1983)Google Scholar
  15. Doerffer, S.S., Groeneveld, D.C., Rudzinski, K.F., Pioro, I.L., Martin, J.W.: Some aspects of critical-heat-flux enhancement in tubes. In: Proc. 2000 IMECE: ASME International Mechanical Engineering Congress and Exposition, Orlando, FL, November 5–10 (2000)Google Scholar
  16. Doroschuk, V.E., Levitan, L.L.: Investigation of droplet deposition from annular dispersed steam-water flow core and wall liquid film. Therm Phys High Temp 9, 591–596 (1971)Google Scholar
  17. Doosan, Creating values for the world nuclear power plants, Doosan Heavy Industries & Construction (2009a)Google Scholar
  18. Doosan, Steam generator, Doosan Heavy Industries & Construction, DH0604 (2009b)Google Scholar
  19. Dragunov, Y., Ryzhov, S., Mokhov, V.: Development of WWER-1200 reactor plant for NPP of «large series» NPP-20068 (March 2007)Google Scholar
  20. Drew, T.B., Mueller, C.: Boiling. Trans AIChE 33, 449 (1937)Google Scholar
  21. EPR, Druckwasserreaktor 1600 MWe (EPR) Kernkraftwerk Olkiluoto 3, Finnland, Funktionsbeschreibung mit Poster, Broshure, Bestell-Nr: ANP:G-46-V2-07-GER Printed in Germany, 500115H WS 03076. K-Nr 309 (2009)Google Scholar
  22. Fleiss, Knapp and Which, STS-17.2, STS-17.1: Messung der Siedeübergangsleistungen und Druckverluste am ATRIUM-10-9Q-Testbündel, e321/92/43, e321/92/44, Karlstein, proprietary (1992)Google Scholar
  23. Friedel, L.: New friction pressure drop correlations for upward, horizontal, and downward two-phase pipe flow. Presented at the HTFS Symposium, Oxford (Hoechst AG Ref No 372217/24 698) (September 1979)Google Scholar
  24. Groeneveld, D.C., Leung, L.K.H.: Evolution of CHF and post-CHF prediction methods for fuel bundles. In: Proceedings of ICONE 8: 8th International Conference on Nuclear Engineering, Baltimore, MD, USA, April 2–6 (2000)Google Scholar
  25. Groeneveld, D.C., Leung, L.K.H., Kirillov, P.L., et al.: The 1995 look-up table for critical heat flux in tubes. Nucl. Eng. Des. 163, 1–23 (1996)CrossRefGoogle Scholar
  26. Groeneveld, D.C., Shan, J.Q., Vasi, A.Z., et al.: The 2005 CHF look-up table. In: 11th International Topical Meeting on Nuclear Thermal Hydraulics (NURETH 2011), Avignon, France, October 2–6 (2005)Google Scholar
  27. Guguchkin, V.V., Nigmatulin, B.I., Markovich, E.E., et al.: Peculiarities in droplet movement and bubbles in wall region, Theses of a report presented at VII All-Union Conf on Two Phase Flow in Power Machines and Apparatus, Leningrad, vol. 3, pp. 316–317 (1985)Google Scholar
  28. Hanratty, T.J., Dykho, L.A.: Physical issues in analyzing gas-liquid annular flows. In: Giot, M., Mayinger, F., Celata, G.P. (eds.) Experimental heat transfer, fluid mechanics and thermodynamics, Edizioni ETS, Pisa, pp. 1127–1136 (1997)Google Scholar
  29. Hewitt, G.F., Gowan, A.H.: Phenomenological modelling of non-equilibrium flows with phase change. In: Proceedings of 7th Eurotherm Seminar Thermal Non- Equilibrium in Two-Phase Flow, Rome, March 23–24, pp. 7–27 (1989)Google Scholar
  30. Hori, K., Miyazaki, K., Kurosu, T., et al.: In bundle void fraction measurement of PWR fuel assembly. In: Proceedings of ICONE, vol. 2(1), pp. 69–76 (1993)Google Scholar
  31. Hori, K., Akiyama, Y., Miyazaki, K., Kurosu, T., Sugiyama, S.: Transient void fraction measurement in a single channel simulating one channel for a PWR fuel assembly. In: 10th Proceedings of Nuclear Thermal-Hydraulics, ANS Winter Meeting, pp. 56–68 (1994)Google Scholar
  32. Hori, K., Akiyama, Y., Miyazaki, K., Kurosu, T., Sugiyama, S.: Void fraction in a single channel simulating one subchannel of a PWR fuel assembly. In: Proceedings of the First International Symposium an Two-Phase Flow Modelling and Experimentation (1995)Google Scholar
  33. Hori, K., Akiyama, Y., Miyazaki, K., Nishioka, H., Takeda, N.: Total evaluation of in bundle void fraction measurement test of PWR fuel assembly. Proceedings of ICONE-4, Part B, 801–811 (1996)Google Scholar
  34. Hoyer, N., Stepniewski, M.: Dry-out prediction in bundle geometry. In: 9th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-1999), San Francisco, CA, October 3–8 (1999)Google Scholar
  35. Hughes, E.D., Paulsen, M.P., Agee, L.J.: A drift-flux model of two-phase flow for RETRAN. Nucl. Technol. 54, 410–420 (1981)Google Scholar
  36. Inoue, A., Futakuchi, M., Yagi, M., et al.: Void fraction distribution in a boiling water reactor fuel assembly and the evaluation of subchannel analysis codes. Nucl. Technol. 112(3), 388–400 (1995a)Google Scholar
  37. Inoue, A., Kurosu, T., Oaki, T., et al.: Void measurement of BWR fuel assembly. J. Atom. Energy Soc. 37(8), 710–720 (1995) (in Japanese)Google Scholar
  38. Inoue, A., Kurosu, T., Oaki, T., et al.: Void fraction distribution in boiling water reactor fuel assembly and evaluation of subchannel code. J. Nucl. Sci. Technol. 32(7), 629–640 (1995c)CrossRefGoogle Scholar
  39. Ishii, M., Chowla, T.C.: Local drag laws in dispersed two-phase flow, NUREG/CR-1230, ANL-79-105 (December 1979)Google Scholar
  40. Kettler, J., Thomauske, B., Nabbi, R., Bouraue, P., Biß, K., Shetty, N., Modolo, G., Rossbach, M., Maier, R., Bongardt, K., Esser, F., Wolters, J., Hamzic, S., Cura, H., Kolev, N.I., Wank, A., Nies, R., Mishustin, I., Pshenichnov, I.: Advanced Gas-cooled Accelerator-driven Transmutation Experiment – AGATE, San Francisco (2010)Google Scholar
  41. Kataoka, I., Ishii, M.: Mechanism and correlation of droplet entrainment and deposition in annular two-phase flow NUREG/CR-2885, ANL-82-44 (July 1982)Google Scholar
  42. Kataoka, I., Ishii, M.: Entrainment and deposition rates of droplets in annular two-phase flow. In: Mori, Y., Yang, W.-J. (eds.) ASME-JSME Thermal Engineering Joint Conference Proceedings, Honolulu, Hawaii, March 20–24, vol. 1, pp. 69–80 (1983)Google Scholar
  43. Kataoka, I., Ishii, M., Mishima, K.: Generation and size distribution of droplets in annular two-phase flow. Trans ASME 105, 230–238 (1983)Google Scholar
  44. Katto, Y.: Prediction of critical heat flux for annular flow in tubes taking into account of the critical liquid film thickness concept. Int. J. Heat. Mass. Transfer. 27(6), 883–890 (1984)CrossRefGoogle Scholar
  45. Kawara, Z., Kataoka, I., Serizawa, A., Ko, Y.J., Takahashi, O.: Analysis of forced convective CHF based on two-fluid and three-fluid model. In: Heat Transfer 1998, Proc 11th IHTC, Kyongju, Korea, August 23–28, vol. 2, pp. 103–108 (1998)Google Scholar
  46. Kelly, J.M., Stewart, C.W., Cuta, J.M.: VIPRE-02 – a two-fluid thermal-hydraulics code for reactor core and vessel analysis: mathematical modelling and solution methods. Nucl. Technol. 100, 246–259 (1992)Google Scholar
  47. Kodama, S., Kataoka, I.: Study on analytical prediction of forced convective CHF in the wide range of quality. In: Proceedings of ICONE10, 10th International Conference on Nuclear Engineering, Arlington, Paper no ICONE10-22128, VA, USA, April 14–18 (2002)Google Scholar
  48. Kolev, N.I.: Transient three-phase three-component non-equilibrium non-homogeneous flow described by 1D-three-velocity fields slip model. In: Proc. Specialists Meeting on Small Break LOCA Analysis in LWRs, Pisa, June 23–27, vol. 3, pp. 363–378 (1985)Google Scholar
  49. Kolev, N.I.: Transiente Dreiphasen Dreikomponenten Strömung, Teil 2: Eindimensionales Schlupfmodell Vergleich Theorie-Experiment, KfK 3926 (August 1985b)Google Scholar
  50. Kolev, N.I.: 3D-Multiphase-Fluid-Dynamik: Reduzierung der Dampffeuchte am RDB-Austritt der Siedewasserreaktoren, Betriebsleitertagung, Geneva, November 27–29 (2002); English: Controlling the Moisture Content in the Steam by Using Nozzles in BWR’s, Eleventh International Conference on Nuclear Engineering, ICONE 2011, ICONE11-36306, Keio Plaza Inter-Continental, Shinjuku, Tokyo, Japan, April 20–23 (2003) Google Scholar
  51. Kolev, N.I.: 25-Years three-fluid modeling-experience: successes and limits. In: Proceedings of ICONE-12 2004, Paper ICONE12-49054, Arlington, VA, April 25–29 (2004); Also in 4th ECCOMAS (European Congress on Computational Methods in Applied Sciences and Engineering, Finland, July 24–28. Also in 6th WCCM (World Congress of Computational Mechanics) Beijing September 5–10. In Extended form in 6th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operations and Safety, October 4–8, Nara-Ken New Public Hall, Nara, Japan, NUTHOS6-N6P380Google Scholar
  52. Kolev, N.I.: IVA Simulations of exercises 1 of phase 1 and 2 of the OECD/NRC benchmark based on NUPEC BWR full-size fine-mesh bundle tests (preliminary). In: Second Workshop on OECD/NRC Benchmark based on NUPEC BWR Full-size Fine-mesh Bundle Tests (BFBT), State College, PA, USA, June 27–29 (2005a)Google Scholar
  53. Kolev, N.I.: Do we have appropriate constitutive sets for sub-channel and fine-resolution 3D-analyses of two-phase flows in rod bundles? In: Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, Palais des Papes, Avignon, France, September 12–15, American Nuclear Society, LaGrange Park (2005)Google Scholar
  54. Kolev, N.I.: Flow boiling in bundles: Comparison of IVA predictions for 153 experiments for variety of bundles, flow regimes including DO, steady state and transients. In: The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH- 2011) Log Number: 547, Popes Palace Conference Center, Avignon, France, October 2–6 (2005)Google Scholar
  55. Kolev, N.I.: Multiphase flow dynamics, Fundamentals, 3rd edn., vol. 1. Springer, Berlin (2007a)CrossRefGoogle Scholar
  56. Kolev, N.I.: Multiphase flow dynamics, Thermal and mechanical interactions, vol. 3. Springer, Berlin (2007b)CrossRefGoogle Scholar
  57. Levy, S.: Forced convection subcooled boiling – prediction of vapor volumetric fraction. Int. J. Heat Mass Transfer 10, 951–965 (1967)CrossRefGoogle Scholar
  58. Lopes, J.C.B., Dukler, A.E.: Droplet entrainment in vertical annular flow and its contribution to momentum transfer. AIChE. J. 32(9), 1500–1515 (1986)CrossRefGoogle Scholar
  59. Lopez de Bertodano, M.A., Shi, J.F., Beus, S.G.: Air-water experiments for annular flow pressure drop in small pipe Nucl. Nucl. Sci. Eng. 126, 108–114 (1997)Google Scholar
  60. Lopez de Bertodano, M.A., Assad, A., Beus, S.: Entrainment rate of droplets in the ripple-annular regime for small vertical ducts. In: Proceedings of the Third International Conference on Multiphase Flow, ICMF 1998, CD-ROM, Lyon, France, June 8–12 (1998)Google Scholar
  61. Macian, R., Aounallah, Y., Coddington, P., Stangroom, P.: Assessment of RETRAN-3D and VIPRE-02 void prediction against experimental transient data. In: Proc. ICONE, 8th Int Conf on Nuclear Engineering, Baltimore, MD, April 2–6 (2000)Google Scholar
  62. Milashenko, V.I., Nigmatulin, B.I., Petukhov, V.V., Trubkin, N.I.: Burnout and distribution of liquid in evaporative channels of various lengths. Int J. Multiphase Flow 15(3), 393–402 (1989)CrossRefGoogle Scholar
  63. Mishima, K., Ishii, M.: Flow regime transition criteria for upward two-phase flow in vertical tubes. Int. J. Heat Mass Transfer 27(5), 723–737 (1984)CrossRefGoogle Scholar
  64. Morooka, S., Inoue, A., Oishi, M., et al.: In-bundle void measurement of BWR fuel assembly by X-ray CT scanner. In: 1st JSME/ASME Joint International Conference on Nuclear Engineering, pp. 237–243 (1991)Google Scholar
  65. Naitoh, M., Iwashita, T., Ando, Y.: Boiling transition analysis code for LWR fuel bundles in the IMPACT project. In: 9th International Topical Meeting on Nuclear Thermal Hydraulics (NUTETH-1999), San Francisco, CA, October 3–8 (1999)Google Scholar
  66. Neykov, B., Aydogan, F., Hochreiter, L., et al.: NUPEC BWR full-size fine-mesh bundle test (BFBT) benchmark. Specifications US NRC, OECD Nuclear Energy Agency, NEA/NSC/DOC 1 (November 5, 2005)Google Scholar
  67. Neykov, B., Ivanov, K., Hochreiter, L.E., Avramova, M.: Summary of comparison and analysis of submitted results for exercise I-1. In: 3rd Workshop OECD/NRC BFBT Benchmark, Pisa, Italy, April 27–29 (2006)Google Scholar
  68. Nigmatulin, B.I.: Heat and mass transfer and force interactions in annular-dispersed two-phase flow. In: 7th Int Heat Transfer Conf., Munich, pp. 337–342 (1982)Google Scholar
  69. Nukiyama, S.: The maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. J Japan Soc Mech Eng 37, 367 (1934); (English translation in 1966: Int J Heat Mass Transfer, vol 9, p 1419)Google Scholar
  70. Nylund, O., et al.: Hydrodynamic and heat transfer measurements on a full scale simulated 36-rod Marviken fuel element with uniform heat flux distribution, FRIGG-2, AB Atomenergi, Stockholm, Sweden, ASEA, VÄSTERAS, R-4-447/RTL-1007 (1968)Google Scholar
  71. Nylund, O., et al.: Hydrodynamic and heat transfer measurements on a full scale simulated 36-rod BHWR fuel element with non-uniform axial and radial heat flux distribution, FRIGG-4, AB Atomenergi, Stockholm, Sweden, ASEA, VÄSTERAS,R4-502/RL-1253 (1970)Google Scholar
  72. OKB, Reactor facilities for AES with VVER-1000 (2008)Google Scholar
  73. Owen, G.D., Hewitt, G.F.: An improved annular two-phase flow model. In: 3rd BHRA International Conference on Multiphase Flow, The Hague (1987)Google Scholar
  74. Paleev, I.I., Filipovich, B.S.: Phenomena of liquid transfer in two-phase dispersed annular flow. Int. J. Heat. Mass. Transfer. 9, 1089 (1966)CrossRefGoogle Scholar
  75. Paulson, K.: Design feature of US-APWR for global deployment, UAP-HF-07115 (July 21, 2008)Google Scholar
  76. Prasser, H.-M.: Reactor technology: complex 1 design of light water reactors, lecture notes – an internet publication, Eidgenössische Technische Hochschule Zürich, Swiss Federal Institute of Technology Zürich (2009)Google Scholar
  77. PWR, Pressurized water reactor, Siemens brochure, order no. A19100-U01-A148-V1-7600, Germany (March 1992)Google Scholar
  78. Rehme, K.: Laminar Strömung in Stabbundeln, Chemie-Ing-Tech, vol. 43, pp. 962–966 (1971)Google Scholar
  79. Rehme, K.: Pressure drop performance of rod bundles in hexagonal arrangements. Int J. Heat Mass Transfer 15, 2499–2517 (1972)CrossRefGoogle Scholar
  80. Rehme, K.: Simple method of predicting friction factors of turbulent flow in non-circular channels. Int. J. Heat. Mass. Transfer. 16, 933–950 (1973)CrossRefGoogle Scholar
  81. Roloff-Bock, I.: 2D-grid generator for heterogeneous porous structures in structured cartesian coordinates, Framatome ANP, proprietary (2005)Google Scholar
  82. Ryjkov, S.B. et al.: New projects for VVER power plants of medium size, International forum Atomexpo 2009, Moscow, CVK Expocenter, in Russian: Рыжов С.Б., Мохов В.А., Никитенко М.П., Четвериков А.Е., Щекин И.Г. (26–28 мая 2009) Новые проекты реакторных установок ВВЭР средней мощности, Международный форум «АТОМЭКСПО 2009» г. Москва, ЦВК «Экспоцентр» (2009),
  83. Saha, P., Zuber, N.: Proc. Int Heat Transfer Conf Tokyo, Paper 134.7 (1974)Google Scholar
  84. Shiralkar, B.S., Lahey, R.T.: The effect of obstacles on a liquid film. J. Heat Transfer, Trans. ASME 95, 528–533 (1973)CrossRefGoogle Scholar
  85. Spierling, H.: Regional void fraction in ATRIUM 10XP at various peaking patterns, Framatome-ANP report, FGT, A1C-1311669-1, proprietary (September 24, 2002)Google Scholar
  86. Stephan, M., Myinger, F.: Countercurrent flow limitation in vertical ducts at high system pressure. In: Hetstroni, G. (ed.) Proceedings of the Ninth International Heat Transfer Conference, Jerusalem, Israel, vol. 6, pp. 47–52 (1990)Google Scholar
  87. Sugawara, S.: Droplet deposition and entrainment modeling based on the three-fluid model. Nucl. Eng. Des. 122, 67–84 (1990)CrossRefGoogle Scholar
  88. Utsuno, H., Ishida, N., Masuhara, Y., Kasahara, F.: Assessment of boiling transition analysis code against data from NUPEC BWR full-size fine-mesh bundle tests. In: 6th International Conference on Nuclear Thermal Hydraulics, Operations and Safety (NUTHOS-6), paper ID. N6P041, Nara, Japan, October 4–8 (2004)Google Scholar
  89. Vogel, Bruch, Wang: SIEMENS Test Section 52 (DTS52) Description of experiments, KWZ BT23, e 244, Erlangen, proprietary (August 19, 1991)Google Scholar
  90. VVER-1500, Reactor plant with WWER-1500 (V–448) for new generation NPP power units (2009),
  91. Wagner, W., Kruse, A.: Properties of water and steam, Springer (1998)Google Scholar
  92. Wallis, G.B.: One-dimensional two-phase flow. McGraw Hill, New York (1969)Google Scholar
  93. Wang, G., Hochreiter, L.E., Sung, Y., Karoutas, Z.E.: VIPRE code void fraction predic-tion assessment using FRIGG loop data. In: 13th International Conference on Nuclear Engineering, Beijing, China, May 16–20 (2005)Google Scholar
  94. Whalley, P.B., et al.: The calculation of critical heat flux in forced convection boiling. In: Proceedingd 5th International Heat Transfer Conference, Tokyo, vol. 4, pp. 290–294 (1974)Google Scholar
  95. Yagi, M., Mitsutake, T., Morooka, S., Inoue, A.: Void fraction distribution in BWR fuel assembly and the evaluation of subchannel code. In: Ninokata, H., Aritomi, M. (eds.) Subchannel Analysis in Nuclear Reactors, Tokyo, Japan, pp. 141–167 (1992)Google Scholar
  96. Zaichik, L.I., Nigmatulin, B.I., Aliphenkov, V.M.: Droplet deposition and film atomization in gas-liquid annular flow. In: Third International Conference on Multiphase Flow, ICMF 1998, Lyon, France (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ErlangenGermany

Personalised recommendations