Temperature Inside the Fuel Elements

  • Nikolay Ivanov KolevEmail author


Chapter 2 gives the methods for describing steady and transient temperature fields in the fuel elements. Some information is provided regarding influence of the cladding oxidation, hydrogen diffusion, and corrosion product deposition on the temperature fields.


Heat Transfer Coefficient Fuel Element Hydrogen Diffusion Fuel Pellet Radial Temperature Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhmyatov, A.S., Bugaev, A.N., Schebnev, V.S.: Training Course, Nuclear Fuel Exploitation on Kalinin NPP, p. 305. Bulletin of the Tomsk Polytechnic University (2002)Google Scholar
  2. Allison, C.M., et al.: SCDAP/RELAP/MOD3.1 Code manuals, MATPRO – A library of materials properties for light-water-reactor accident analysis. NUREG/CR-6150, EGG-2720, vol. 4 (1993)Google Scholar
  3. Barré, B.: Futur du nucléaire nucléaire du futur, Séminaire SLC (January 2006)Google Scholar
  4. Biancheria, A.: The effect of porosity on thermal conductivity of ceramic bodies. Trans. Am. Nucl. Soc. 9(1), 15 (1966)Google Scholar
  5. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena. John Wiley & Sons, New York (1960)Google Scholar
  6. Dombrovskiy, L.A., et al.: Toplofizicheskie prozessy pri razrushenie aktivnoy zony VVER I vzaimodejstvii koriuma s korpusom reaktora, Preprint no 2-431, Russian Academy of Science, IVTAN Association, Moscow (1999)Google Scholar
  7. EPR. Druckwasserreaktor 1600 MWe (EPR) Kernkraftwerk Olkiluoto 3, Finland, Funktionsbeschreibung mit Poster, Broshure, Bestell-Nr: ANP:G-46-V2-07-GER Printed in Germany, 500115H WS 03076. K-Nr 309 (2009) Google Scholar
  8. Fratzscher, W., Felke, K.: Einführung in die Kernenergetik. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1973)Google Scholar
  9. Frost, B.R.T.: Theories of swelling and gas retention in ceramic fuels. Nucl. Appl. Technol. 9(2), 128–140 (1970)Google Scholar
  10. Glasstone, S., Edlund, M.C.: The elements of nuclear reactor theory. Van Nostrand Company, New York (1952)Google Scholar
  11. Grosse, M.: Comparison of the high-temperature steam oxidation kinetics of advanced cladding materials. Nucl. Technol. 170, 272–279 (2010)Google Scholar
  12. IAEA-21, WWER-1000 reactor simulator, Workshop material, International Atomic Energy Agency, Training course series No. 21 (2003)Google Scholar
  13. Kolev, N.I.: Comparison of the RALIZA-2/02 two-phase flow model with experimental data. Nucl. Eng. Des. 85, 217–237 (1985)CrossRefGoogle Scholar
  14. Kolev, N.I.: Transiente Zweiphasenströmung (Transient two-phase flow). Springer, Berlin (1986)Google Scholar
  15. Kolev, N.I.: Numerical modelling of three-phase three-component flow, Thesis for Doctor of Science Degree, Bulgarian Academy of Science, Institute for Nuclear Research and Nuclear Energy, Discipline 02.06.04 Nuclear Reactors and Nuclear Power Plants, Sofia (1987)Google Scholar
  16. Lassmann, K.: TRANSURANUS: A Fuel Rod Analysis Code Ready for Use, Journal of Nuclear Materials, 188 (1992)Google Scholar
  17. Mason, E.A., Saxena, S.C.: The Physics of Fluids 1, 361–369 (1958)Google Scholar
  18. Neeb, K.H.: The radiochemistry of nuclear power plants with light water reactors. Walter de Gruyter, Berlin (1997)CrossRefGoogle Scholar
  19. Pawel, R.E., Cathcart, J.V., McKee, R.A.: The kinetic of oxidation of zircaloy-4 in steam at high temperatures. Journal of the Electrochemocal Societe 126, 1105–1111 (1979)CrossRefGoogle Scholar
  20. Pentilä, S., Toivonen, A., Heikinheimo, L., Novotny, R.: Corrosion studies of candidate materials for European HPLWR. Nucl. Technol. 170, 261–271 (2010)Google Scholar
  21. Poncelet, C.G.: Burnup physics of heterogeneous reactor lattices, WCAP-6069, Westinghouse Electric Corp (1965)Google Scholar
  22. Poncelet, C.G.: LASER – a depletion program for lattice calculations based on MUFT and Thermos. WCAP-6073, Westinghouse Electric Corp (1966)Google Scholar
  23. Rassohin, N.T., Gradusov, G.H., Gorbatych, V.P.: Korosija splava zirkonija – 1% niobija v uslovijah teploperedaci. Trudy MEI, Vyp 83 (1971)Google Scholar
  24. Rassohin, N.T., Kabanov, L.P., Tevlin, S.A., Tepsin, V.A.: Jelesnookisnye otlojenija na teplovydeljastich poverhnostjah I ih udalenija, Preprint B-7 doklada na mejdunarodnoj konferencii po elektrohimii jidkih rastvorov pri vysokom davlenii I temperature, England (January 1973)Google Scholar
  25. Rust, J.H., Weaver, L.E. (eds.): Nuclear Power Safety. Pergamon Press, New York (1976)Google Scholar
  26. Stuckert, J., Birchey, J., Große, M., Jaeckel, B., Steinbrück, M.: Experimental and calculational results of the integral reflood test QUENCH-15 with ZIRLOtm cladding tubes in comparison with previous QUENCH tests. Nuclear Engineering and Design 241, 3224–3233 (2011)CrossRefGoogle Scholar
  27. Tiitta, A., Tarvainen, M., Iievlev, S., Dvoeglazov, A., Bytchkov, V., Popescu, D., Lee, Y.-G., Hosoya, M., Goulo, V. (OCTOBER, VVER-1000 SFAT: Final Report on Task FIN A 1073 of the Finnish Support Program to the IAEA Safeguards, STUK-YTO-TR 192 (2002)Google Scholar
  28. Tong, L.S., Weisman, J.: Thermal analysis of pressurized water reactors. American Nuclear Society, Hinsdale (1970)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ErlangenGermany

Personalised recommendations