Advertisement

Thermo-Physical Properties for Severe Accident Analysis

  • Nikolay Ivanov Kolev

Abstract

Several modern aspects of the severe accident analysis can not be understood if the engineer does not have accurate information of the material properties for the participating structural materials in solid, in liquid and in some cases in gaseous states. Chapter 17 contains valuable sets of thermo-physical and transport properties for severe accident analysis for the following materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth and leadbismuth alloys. The emphasis is on the complete and consistent thermo dynamical sets of analytical approximations appropriate for computational analysis.

Keywords

Specific Capacity Thermophysical Property Liquid Density Boron Oxide Uranium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chu, C.C., Sieniki, J.J., Beker Jr., L.: Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Theophanous, T.G., et al. (eds.) In-vessel Coolability and Retention of a Core Melt, DOE/ID-10460, vol. 1. U.S. Department of Energy Report (October 1996) Google Scholar
  2. Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, New York (2007)Google Scholar
  3. McCahan, S., Shepherd, J.E.: A thermodynamic model for aluminum-water interaction. In: Proc. of the CSNI Specialists Meeting on Fuel-Coolant Interaction, Santa Barbara, California, NUREC/CP-0127 (January 1993) Google Scholar
  4. Allison, C.M., et al.: SCDAP/RELAP/MOD3.1 Code manuals, MATPRO – A library of materials properties for light-water-reactor accident analysis, NUREG/CR-6150, EGG-2720, vol. 4 (1993) Google Scholar
  5. Brassfield, H.C., et al.: Recommended property and reactor kinetics data for use in evaluating a light-water-coolant reactor loss-of-coolant incident involving Zircaloy-4 or 304-SS-clad UO2, GEMP-482 (April 1968) Google Scholar
  6. Breitung, W., Reil, K.O.: In-pile vapor pressure measurements on UO2 and (U, Pu)O2, Kernforschungszentrum Karlsruhe, KfK 3939 (August 1985) Google Scholar
  7. Bober, M., Singer, J.: Vapor pressure determination of liquid UO2 using a boiling point technique. Nucl. Sci. Eng. 97, 344–352 (1987)Google Scholar
  8. Chawla, T.C., et al.: Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis. Nuclear Engineering and Design 67, 57–74 (1981) Google Scholar
  9. Chu, C.C., Sieniki, J.J., Beker Jr., L.: Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Teofanous, T.G., et al. (eds.) In-vessel Coolability and Retention of a Core Melt, DOE/ID-10460, vol. 1 (October 1996) Google Scholar
  10. Gmelin: Handbook of Inorganic Chemistry, 8th edn., suppl. vol. C5, Chap. 4.8.6: Thermal conductivity. Springer, Berlin (1986) Google Scholar
  11. Fink, J.K., Chasanov, M.G., Leibowitz, L.: Thermodynamic properties of uranium dioxide, ANL-CEN-RSD-80-3 (April 1981a) Google Scholar
  12. Fink, J.K., Chasanov, M.G., Leibowitz, L.: Thermo-physical properties of uranium dioxide. J. Nucl. Mater. 102, 17–25 (1981b)CrossRefGoogle Scholar
  13. Fink, J.K., Chasanov, M.G., Leibowitz, L.: Properties for safety analysis, ANL-CEN-RSD-82-2 (1982) Google Scholar
  14. Fink, J.K., Leibowitz, L.: An analysis of measurements of the thermal conductivity of liquid urania. High Temperatures-High Pressures 17, 17–26 (1985) Google Scholar
  15. Fischer, E.A.: A new evaluation of the urania equation of state based on recent vapor pressure. Nucl. Sci. Eng. 101, 97–116 (1989)Google Scholar
  16. Fischer, E.A.: Fuel evaluation of state data for use in fast reactor accident analysis codes, KfK 4889, Kernforschungszentrum Karlsruhe (May 1992) Google Scholar
  17. Hagrman, D.L., Laats, E.T., Olsen, C.S.: In: Hohorst, J.K. (ed.) SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990) Google Scholar
  18. Hendricks, R.C., Baron, A.K., Peller, C.P.: GASP – A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. NASA technical note NASA TN D-7806, Washington, DC (February 1975) Google Scholar
  19. Hohorst, J.K. (ed.): SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990) Google Scholar
  20. Karim, S.: PhD Thesis, MEI Moscow (1976) Google Scholar
  21. Karow, H.U.: Thermodynamic state, specific heat and enthalpy function of saturated UO2 vapor between 3000K and 5000K. Kernforschungszentrum Karlsruhe, KfK 2390 (February 1977) Google Scholar
  22. Kim, et al.: Measurements of thermal diffusivity of molten UO2. In: Proceedings of the 7th Symposium on Thermophysical Properties at the National Bureau of Standards, Gaithersberg, MD, CONF 770537-3, May 12, pp. 338–343 (1977) Google Scholar
  23. Kolev, N.I.: Multiphase Flow Dynamics. Fundamentals, vol. 1. Springer, Berlin (2007) Google Scholar
  24. Kusnezov, V.D., Katkovskii, E.A.: Teplovoj I gidravlicheskij raschet na EVM reaktorov s vodoj pod davleniem. MEI Moscow (1975) Google Scholar
  25. Leibowitz, L., et al.: Properties for LMFBR safety analysis, ANL-CEN-RSD-76-1 (April 1976) Google Scholar
  26. Lyon, W.F., Baily, W.E.: The solid-liquid diagram of the UO2-PO2 system. J. Nucl. Mater. 22, 332 (1976)CrossRefGoogle Scholar
  27. Malang, S.: Simulation of nuclear fuel rods by using process-computer controlled power for indirect electrically heated rods, Oak Ridge National Laboratory, ORNL-TM-4712, GEMP-482 (1975) Google Scholar
  28. Marao, A., Kalitka, T., Kalitka, A., Uspuras, E.: Adaptation of the FEMAXI-6 code and RBMK fuel rods model testing employing the best estimate approach. Kerntechnik 75(3), 72–80 (2010)CrossRefGoogle Scholar
  29. Redlich, O., Kwong, J.N.S.: On the thermodynamics of solutions. V, An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244 (1949)CrossRefGoogle Scholar
  30. Reymann, G.A.: Specific heat capacity and enthalpy. In: Hohorst, J.K. (ed.) SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990) Google Scholar
  31. Riedel, L.: Eine neue universelle Dampfdruckformel. Chem.-Ing. Tech. 26, 83–89 (1954)CrossRefGoogle Scholar
  32. Cordfunke, E.H.P., Konings, R.J.M.: Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam (1990)Google Scholar
  33. Chu, C.C., Sieniki, J.J., Beker Jr., L.: Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Teofanous, T.G., et al. (eds.) In-Vessel Coolability and Retention of a Core Melt, DOE/ID-10460, vol. 1, U.S. Department of Energy Report (October 1996) Google Scholar
  34. Gilchrist, K.E.: Thermal property measurements on Zirkaloy-2 and associated oxide layers. J. Nucl. Mater. 62, 257–264 (1976)CrossRefGoogle Scholar
  35. Hagrman, D.L.: In: Hohorst, J.K. (ed.) SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990) Google Scholar
  36. Hammer, R.R.: Zircaloy-4, uranium dioxide and materials formed by their interaction, A literature review with extrapolation of physical properties to high temperatures, IN-1093 (September 1967) Google Scholar
  37. Hohorst, J.K. (ed.): SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990) Google Scholar
  38. Brandes, E.A. (ed.): Smithels metals reference book, 6th edn. Butterworth and Co., London (1983)Google Scholar
  39. Cao, G., et al.: In situ measurements of spectral emissivity of materials for very high temperature reactors. Nuclear Technology 175, 460–467 (2011)Google Scholar
  40. Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn. part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9, American Chemical Society (1998) Google Scholar
  41. Chawla, T.C., et al.: Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis. Nuclear Engineering and Design 67, 57–74 (1981)CrossRefGoogle Scholar
  42. Chu, C.C., Sieniki, J.J., Beker Jr., L.: Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Teofanous, T.G., et al. (eds.) In-Vessel Coolability and Retention of a Core Melt, DOE/ID-10460, vol. 1. U.S. Department of Energy Report (October 1996) Google Scholar
  43. Fischer, E.A.: A new evaluation of the urania equation of state based on recent vapor pressure. Nucl. Sci. Eng. 101, 97–116 (1989)Google Scholar
  44. Fischer, E.A.: Fuel evaluation of state data for use in fast reactor accident analysis codes, KfK 4889, Kernforschungszentrum Karlsruhe (May 1992) Google Scholar
  45. Fortov, V.E., Dremin, A.N., Leont’ev, A.A.: Evaluation of the parameters of the critical point. High Temp. 13, 984–992 (1975)Google Scholar
  46. Fraser, M.E., Lu, W.K., Hamielec, A.E., Murarka, R.: Surface tension measurements on pure liquid iron and nickel by an oscillating drop technique. Metallurgical and Materials Transactions B 2(3), 817–823 (1971)Google Scholar
  47. Hohorst, J.K. (ed.): SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, ECG-2555, vol. 4 (1990) Google Scholar
  48. Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, Berlin (2007) Google Scholar
  49. Kurz, W., Lux, B.: The sound velocity of iron and iron alloys in solid and fluid states. High Temp. – High Pressure 1, 387–399 (1969) (in German) Google Scholar
  50. Leibowitz, L., et al.: Properties for LMFBR safety analysis, ANL-CEN-RSD-76-1 (April 1976) Google Scholar
  51. Ostensen, R.W., Murphy, W.F., Wrona, B.J., Dietrich, L.W., Florek, J.C.: Intrusion of molten steel into cracks in solid fuel in transient-undercooling accident in liquid-metal fast breeder reactor. Nucl. Technol. 36, 200–214 (1977)Google Scholar
  52. Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)Google Scholar
  53. Redlich, O., Kwong, J.N.S.: On the thermodynamics of solutions. V, An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244 (1949)CrossRefGoogle Scholar
  54. Richter, F.: Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen Stahleisen-Sonderberischte Heft 8. Verlag Stahleisen M.B.H.-Düsseldorf (1983) Google Scholar
  55. Teofanous, T.G., et al.: In-vessel coolability and retention of a core melt, DOE/ID-10460, vol. 1. U.S. Department of Energy Report (October 1996) Google Scholar
  56. VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang, 6th Aufl. VDI-Verlag, Düsseldorf (1991) Google Scholar
  57. Bonnell, D.W.: Property measurements at high temp., levitation calorimetry studies of liquid metals. Ph.D. Thesis Rice University, Houston, TX (1972) Google Scholar
  58. Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9, American Chemical Society (1998) Google Scholar
  59. Cordfunke, E.H.P., Konings, R.J.M.: Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam (1990)Google Scholar
  60. Fink, J.K., Leibowitz, L.: Thermal conductivity of zirconium. J. Nucl. Mater. 226, 44–50 (1995)CrossRefGoogle Scholar
  61. Hohorst, J.K. (ed.): SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990)Google Scholar
  62. Kelly, J.E., Kao, S.P., Kazimi, M.S.: THERMIT-2: A two fluid model for light water reactor subchannel transient analysis. MIT Energy Laboratory Electric Utility Program, Report No. MIT-EL.81-014 (April 1981) Google Scholar
  63. Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, Berlin (2007) Google Scholar
  64. Krishnan, S., Weber, J.K.R., Anderson, C.D., Nordine, P.C.: Spectral emissivity and optical properties at l=632.8 nm for liquid uranium and zirconium at high temperature. J. Nucl. Mater. 203, 112–121 (1993)CrossRefGoogle Scholar
  65. Marao, A., Kalitka, T., Kalitka, A., Uspuras, E.: Adaptation of the FEMAXI-6 code and RBMK fuel rods model testing employing the best estimate approach. Kerntechnik 75(3), 72–80 (2010)CrossRefGoogle Scholar
  66. Rassohin, N.T., Gradusov, G.H., Gorbatych, V.P.: Korosija splava zirkonija – 1% niobija v uslovijah teploperedaci. Trudy MEI, Vyp. 83 (1971) Google Scholar
  67. TAPP, A Database of Thermo-Chemical and Physical Properties. ES Microware, Hamilton, Ohio (1994) Google Scholar
  68. Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9, American Chemical Society (1998) Google Scholar
  69. Hohorst, J.K.: SCDAP/RELAP5/M002 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, ECG-2555, vol. 4 (1990) Google Scholar
  70. Kammer, C.: Aluminium-Taschenbuch, 15th Aufl. Aluminium-Verlag, Düsseldorf (1995) Google Scholar
  71. Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, Berlin (2007) Google Scholar
  72. Touloukian, Y.S., DeWitt, D.P.: Thermo-Physical Properties of Matter. Plenum Press, New York (1972)Google Scholar
  73. Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn. McGraw-Hill, New York (1985)Google Scholar
  74. Barin, I., Knacke, O.: Thermo-Chemical Properties of Inorganic Substances. Springer, Heidelberg (1973)Google Scholar
  75. Bates, J.L., McNeilly, C.E., Rasmussen, J.J.: Properties of Molten Ceramics. Batelle Memorial Institute, Richland, Washington BNWL-SA-3529 (1971) Google Scholar
  76. Biomquist, R.A., Fink, J.K., Leibowitz, L.: Viscosity of molten alumina. Ceram. Bull. 5, 522 (1978)Google Scholar
  77. Elyutin, V.P., Mitin, B.C., Nagibin, Y.A.: Properties of liquid aluminum oxide. Fiz. Aerodispersnykh Syst. 7, 104–109 (1972)Google Scholar
  78. Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007)CrossRefGoogle Scholar
  79. Kuhn, D., Moschke, M., Werle, H.: Freezing of aluminum oxide and iron flowing upward in circular quartz glass tubes, KfK 3592 (October 1983) Google Scholar
  80. McCahan, S., Shepherd, J.E.: A thermodynamic model for aluminum-water interaction. In: Proceedings of the CSNI Specialists Meeting on Fuel-Coolant Interaction, Santa Barbara, California, NUREC/CP-0127 (January 1993) Google Scholar
  81. Peppler, W., Menzenhauer, P., Will, H.: Simulated fuel melt movement and relocation intwo seven-pin-bundle geometries, KfK 3591 (July 1983) Google Scholar
  82. Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985) Google Scholar
  83. Samsonov, G.V. (ed.): The Oxide Handbook. IFI/PLENUM, New York (1973) Google Scholar
  84. Samsonov, G.V. (ed.): The Oxide Handbook, 2nd edn. IFI/PLENUM, New York (1982) Google Scholar
  85. Shpil’rain, E.E., Yakimovich, K.A., Tsitsarkin, A.F.: Experimental study of the density of liquid alumina up to 2750°C. High Temp. – High Pressures 5, 191–198 (1973)Google Scholar
  86. Touloukian, Y.S. (ed.): Recommended values of the thermo-physical properties of eight alloys, major constituents and their oxides thermo-physical properties research center, Purdue University, Lafayette, Indiana (February 1966) Google Scholar
  87. Touloukian, Y.S., Buyco, E.H.: Thermo-Physical Properties of Matter, Specific Heat/Nonmetallic Solids. DATA TABLE NO. 62-A, vol. 5. IFI/PLENUM, New York (1970) Google Scholar
  88. Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermo-Physical Properties of Matter, Thermal Conductivity/Nonmetallic Solids. DATA TABLE no 32, vol. 2. IFI/PLENUM, New York (1970) Google Scholar
  89. Turnay, K.: Thermophysicalische Eigenschaften des Aluminiumoxides und Quarzglases, Research Center Karlsruhe (Mai 1985) Google Scholar
  90. Urbain, G.: Viscosite de 1’alumine liquide. Rev. Int. Hautes Temper. Refract 19, 55–57 (1982)Google Scholar
  91. Bityukov, V.K., Petrov, V.A.: Optical quartz glass as a reference substance for the thermal conductivity coefficient of partially transparent materials. High Temperature 38(2), 293–299 (2000)CrossRefGoogle Scholar
  92. Bityukov, V.K., Petrov, V.A., Stepanov, S.V.: Determination of the coefficient of thermal conductivity of silica glass by the contactless flat-plate method at 950-1500K. High Temp. 21(6), 840 (1984); Teplofiz. Vys. Temp. 21(6), 1099 (1983)Google Scholar
  93. Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007a)CrossRefGoogle Scholar
  94. Krzhizhanovskii, R.E., Shtern, Z.Y.: Thermo-physical properties of nonmetallic materials, Energija, Leningrad (1973)Google Scholar
  95. Men’, A.A., Chechel’nitskii, A.Z.: Teplofis. Vys. Temp. 11(6), 1309 (1973)Google Scholar
  96. Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn. McGraw-Hill, New York (1985)Google Scholar
  97. Samsonov, G.V. (ed.): The Oxide Handbook, 2nd edn. IFI/PLENUM, New York (1982)Google Scholar
  98. Touloukian, Y.S. (ed.): Recommended values of the thermo-physical properties of eight alloys, major constituents and their oxides thermo-physical properties research center, Purdue University, Lafayette, Indiana (February 1966)Google Scholar
  99. Touloukian, Y.S., Buyco, E.H.: Thermo-Physical Properties of Matter. Specific Heat/Nonmetallic Solids. DATA TABLE NO. 62-A, vol. 5. IFI/PLENUM, New York (1970)Google Scholar
  100. Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermo-Physical Properties of Matter, Thermal Conductivity/Nonmetallic Solids. DATA TABLE no 32, vol. 2 IFI/PLENUM, New York (1970)Google Scholar
  101. Touloukian, Y.S., Ho, C.Y. (eds.): Thermo-physical properties of selected aerospace materials, Part I, Thermo-physical and Electronic Properties Information Center, CINDAS – Purdue University (1976)Google Scholar
  102. Turnay, K.: Thermophysicalische Eigenschaften des Aluminiumoxides und Quarzglases, Research Center Karlsruhe (Mai 1985)Google Scholar
  103. Barin, I., Knacke, O.: Thermochemical Properties of Inorganic Substances. Springer, New York (1973)Google Scholar
  104. Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007a)CrossRefGoogle Scholar
  105. Lide, D.R., Frederikse, H.P.R. (eds.): CRC Handbook of Chemistry and Physics, 78th edn. CRC Press, New York (1997)Google Scholar
  106. Massalski, T.B. (ed.): Binary Alloy Phase Diagrams ASM International, 2nd edn. ASM International, Materials Park, Ohio (1992)Google Scholar
  107. MATPRO, SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A Library of Materials Properties for Light- Water-Reactor Accident Analysis, NUREG/CR-5273, vol. 4 (1990)Google Scholar
  108. Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)Google Scholar
  109. Powers, D.A., Brockmann, J.E., Shiver, A.W.: VANESA: A mechanistic model of radionuclide release and aerosol generation during core debris interactions with concrete, NUREG/CR-4308 (July 1986)Google Scholar
  110. Reimann, M., Stiefel, S.: The WECHSL-Mod2 Code: A computer program for the interaction of a core melt with concrete including the long term behavior – Model Description and User’s Manual, KfK 4477 (June 1989)Google Scholar
  111. Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter. Thermal Conductivity – Nonmetallic Solids, vol. 2. IFI/PLENUM, New York (1970)Google Scholar
  112. Touloukian, Y.S., DeWitt, D.P.: Thermophysical Properties of Matter. Plenum Press, New York (1972)Google Scholar
  113. Touloukian, Y.S., Kirby, R.K., Taylor, R.E., Lee, T.Y.R.: Thermophysical Properties of Matter. Thermal Expansion – Nonmetallic Solids, vol. 13. IFI/PLENUM, New York (1977)Google Scholar
  114. Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9, American Chemical Society (1998)Google Scholar
  115. Cordfunke, E.H.P., Konings, R.J.M.: Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam (1990)Google Scholar
  116. Elyutin, V.P., Kostikov, V.I., Pen’kov, I.A.: Effect of carbon on the surface tension and density of liquid vanadium, niobium, and molybdenum. Poroshovaya Metallurgya 93(9), 46–51 (1970)Google Scholar
  117. Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, Berlin (2007)Google Scholar
  118. Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)Google Scholar
  119. Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter. Thermal Conductivity – Metallic Elements and Alloys, vol. 1. IFI/PLENUM, New York (1970)Google Scholar
  120. Touloukian, Y.S., DeWitt, D.P.: Thermo-Physical Properties of Matter. Plenum Press, New York (1972)Google Scholar
  121. Aesar, A.: Bestellkatalog Forschungschemikalien. Metalle and Materialien 1999–2000 (1999)Google Scholar
  122. Cordfunke, E.H.P., Konings, R.J.M.: Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam (1990)Google Scholar
  123. Cox, J.D., Wagman, D.D., Medvedev, V.A.: CODATA Key Values for Thermodynamics. Hemisphere Publ. Corp., New York (1989)Google Scholar
  124. Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veyts, I.V., Medvedev, V.A., Kachkuruzov, G.A., Yungman, V.S.: Termodinamicheskie Svoistva Individual’nykh. Tom III. Nauka, Moskva (1981)Google Scholar
  125. Kelly, K.K.: J. Am. Chem. Soc. 63, 1137 (1941)Google Scholar
  126. Kerr, E.C., Hersh, N., Johnston, H.L.: J. Am. Chem. Soc. 72, 4738 (1950)CrossRefGoogle Scholar
  127. Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007)CrossRefGoogle Scholar
  128. Kracek, F.C., Morey, G.W., Merwin, H.E.: Am. J. Sci. 35, 143 (1938)Google Scholar
  129. Kruh, R., Stern, K.H.: The effect of solutes on the properties and structure of liquid boric oxide. J. Am. Chem. Soc. 78, 278–281 (1956)CrossRefGoogle Scholar
  130. Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)Google Scholar
  131. Schmidt, N.E.: Zh. Neorg. Khim. 11, 441 (1966); Russ. J. Inorg. Chem. 11, 241Google Scholar
  132. Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter. Thermal Conductivity – Nonmetallic Solids, vol. 2. IFI/PLENUM, New York (1970)Google Scholar
  133. Bottomley, P.D., Coquerelle: Metallurgical examination of bore samples from the three mile island unit 2 reactor core. Nuclear Technology 87, 120–136 (1989)Google Scholar
  134. Chong, J.S., Chrisiansen, E.B., Baer, A.D.: Rheology of concentrated suspensions. J. Appl. Polym. 15, 2007–2021 (1971)CrossRefGoogle Scholar
  135. Fink, J.K., Chasanov, M.G., Leibowitz, L.: Thermodynamic properties of uranium dioxide, ANL-CEN-RSD-80-3 (April 1981a)Google Scholar
  136. Fink, J.K., Chasanov, M.G., Leibowitz, L.: Thermo-physical properties of uranium dioxide. J. of Nuclear Materials 102, 17–25 (1981b)CrossRefGoogle Scholar
  137. Hayward, P.J., George, I.M.: Dissolution of UO2 in Zirkaloy-4 Part-4: Phase evolution during dissolution and cooling of, to 2500°C specimen (ZrO0.54-UO2), vol. 232 pp. 13–22 (1966)Google Scholar
  138. Hodge, S.A., Ott, L.J.: Interpretation of the XR2-1 experiment and characteristics of the BWR lower plenum debris bed. In: Proc. of the Int. Top. Meeting on Advanced Reactor Safety, Orlando, Florida, June 1-5, vol. 1 (1997)Google Scholar
  139. Juenke, E.F., Whitte, J.F.: Zr-UO2, Report GEMP-731 (1969)Google Scholar
  140. Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007a)CrossRefGoogle Scholar
  141. Moshev, V.V., Ivanov, V.A.: Rheological behavior of concentrated non-newtonian suspensions. Nauka, Moskva (1990)Google Scholar
  142. Politis, C.: Untersuchungen im Dreistoffsystem Uran-Zirkon-Sauerstoff, ZrO0.51-UO2, Kernforschungszentrum Karlsruhe, KfK Report 2167 (October 1975)Google Scholar
  143. Ramacciotti, M., Journeau, C., Sudreau, F., Cognet, G.: Viscosity models for corium melts. In: Ninth Int. Top. Meeting on Nuclear Thermal Hydraulics (NURETH-9), San Francisco, October 3-8 (1999)Google Scholar
  144. Romberger, K.A., Baes Jr., C.F., Stone, H.H.: Phase equilibrium studies in the UO2-ZrO2 system. J. Inorg. Nucl. Chem. 29, 1619–1630 (1967)CrossRefGoogle Scholar
  145. Skokan, A.: High temperature phase relations in the U-Zr-O system, ZrO0.43-UO2. In: 5th Int. Meeting on Thermal Nuclear Reactor Safety, Karlsruhe, September 9-13, pp. 1035–1042 (1984)Google Scholar
  146. Spindler, B., Vateau, J.M.: The simulation of melt spreading with THEMA code Part: 1 Model, assessment strategy and assessment against analytical and numerical solutions. Nuclear Engineering and Design 236, 415–424 (2006a)CrossRefGoogle Scholar
  147. Spindler, B., Vateau, J.M.: The simulation of melt spreading with THEMA code Part: 2 Assessment against spreading experiments. Nuclear Engineering and Design 236, 425–441 (2006b)CrossRefGoogle Scholar
  148. Tim, K.T., Olander, D.R.: Dissolution of uranium dioxide by molten zitcaloy. Journal of Nuclear Materials 154, 85–101 (1988)CrossRefGoogle Scholar
  149. Borishanskij, V.M., Kutateladze, S.S., Novikov, I.I., Fedynskij, O.S.: Jidkometaliceskie teplonositeli (Liquid metal coolants), Atomisdat (1976)Google Scholar
  150. Brandhurst, D.H., Buchanan, A.S.: Surface properties of liquid sodium and sodium-potassium alloy in contact with metal oxide surfaces. Aust. J. Chem. 14(3), 397–408 (1961)CrossRefGoogle Scholar
  151. Bystrov, P.I., Kagan, D.N., Krechetova, G.A., Shpilrain, E.E.: Zhidkometallicheskie teplonositeli dlya teplovyh trub i energeticheskih ustanovok (Liquid Metal Heat-Carriers for Heat Pipes and Power Facilities). Nauka Press, Moscow (1988)Google Scholar
  152. Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9 (1998)Google Scholar
  153. Cordfunke, E.H.P., Konings, R.J.M. (eds.): Thermochemical Data for Reactor Materials and Fusion Products. Nord Holland, Amsterdam (1990)Google Scholar
  154. Dwyer, O.E.: Boiling Liquid Metal Heat Transfer. American Nuclear Society, Hinsdale (1976)Google Scholar
  155. Ewing, C.T., Stone, J.P., Spann, J.R., Steinkuller, E.W., Williams, D.D., Miller, R.R.: High-Temperature Properties of Potassium, NRL-6233. Naval Research Laboratory, Washington, DC (September 1965)Google Scholar
  156. Ewing, C.T., Stone, J.P., Spann, J.R., Miller, R.R.: Molecular association in Sodium, Potassium and Cesium vapors at high temperature. J. Phys. Chem. 71(3), 473–477 (1967)CrossRefGoogle Scholar
  157. Fink, J.K., Chasanov, M.G., Leibowitz, L.: Properties for Safety Analysis, ANL-CEN-RSD-82-2 (1982)Google Scholar
  158. Golden, G.H., Tokar, J.V.: Thermophysical Properties of Sodium. ANL-7323. Argonne National Laboratory, Argonne (1967)Google Scholar
  159. Gurvich, L.V., Yorish, V.S., Khandamirova, N.E., Yungman, V.S.: Ideal gaseous state. In: Ohse, R.W. (ed.) Handbook of Thermodynamic and Transport Properties of Alkali Metals. Blackwell Scientific Publishing, Oxford (1985)Google Scholar
  160. Hame, W.: Aufbereitung der Stoffunktionen für Natrium; Einsatz in COMIX-Referenzversion KfK auf M7890 und Vektorrechner, PTF report delivered to KfK (December 1986)Google Scholar
  161. Ivanovskij, M.N., Sorokin, V.P.: Subbotin VI Isparenie I kondensazija metalov. Atomizdat, Moskva (1976)Google Scholar
  162. Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007a)CrossRefGoogle Scholar
  163. Kiriyanenko, A.A., Makarova, O.P., Romanov, V.D., Solov’ev, A.N.: Experimental investigation of the surface tension of liquid sodium. J. Appl. Mech. Tech. Phys. 59(4), 121–122 (1965)CrossRefGoogle Scholar
  164. Makansi, M., Selke, W.A., Bonilla, C.F.: Thermodynamic properties of sodium. J. Chem. Eng. Data 5(4), 441–452 (1960)CrossRefGoogle Scholar
  165. Miller, D., Cohen, A.B., Dickerman, C.E.: Estimation of vapor and liquid density and heat of vaporization of alkali metal to the critical point. In: International Conference of Safety of Fast Breeder Reactors, Aix-en Provence, France (September 1967)Google Scholar
  166. Mozgovoi, A.G., Roshchupkin, V.V., Pokrasin, M.A., Fokin, L.R., Handomirova, N.E.: Lithium, sodium, potassium, rubidium, cesium. Saturation Vapor Pressure at High Temperature. GSSSD 112-87. Standards Press, Moscow (1988)Google Scholar
  167. Novikov, I.I., Roshchupkin, V.V., Trelin, Y.S., Tsiganova, T.A., Mozgovoi, A.G.: Review series an thermophysical properties of substances, no. 6(32), p. 65. Institute of Hi, Temperatures Acad. Sci. USSR, Moscow (1981)Google Scholar
  168. Padilla Jr., A.: High-Temperature Thermodynamic Properties of Sodium, HEDL-TME 77-27. Hanford Engineering Development Laboratory, Richland (1978)Google Scholar
  169. Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)Google Scholar
  170. Petiot, F., Seiler, J.-M.: Physical properties of sodium. A contribution to the estimation of the critical coordinates. In: 10th Liquid Metal Boiling Working Group, Katlsruhe (October 1982)Google Scholar
  171. Shpilrain, E.E., Yakimovich, K.A., Fomin, V.A., Skovorod’ko, S.N., Mozgovoi, A.G.: Handbook of Thermodynamic and Transport Properties of Alkali Metals, p. 753. Blackwell Scientific Publications, Oxford (1994)Google Scholar
  172. Stone, J.P., Ewing, C.T., Spann, J.R., Steinkuller, E.W., Williams, D.D., Miller, R.R.: High-Temperature Properties of Sodium. NRL-6241, Naval Research Laboratory, Washington, DC (1965)Google Scholar
  173. Stone, J.P., Ewing, C.T., Spann, J.R., Steinkuller, E.W., Williams, D.D., Miller, R.R.: High-temperature properties of sodium. J. Chem. Eng. Data 11, 309 (1966)CrossRefGoogle Scholar
  174. Thormeier, K.: Solubility of noble gases in liquid sodium. Nucl. Eng. Design 14, 69 (1970)CrossRefGoogle Scholar
  175. Trelin, J.S., Vasiljev, I.I., Rostchupkin, B.B.: Atomaja Energia 9(5), 410 (1960)Google Scholar
  176. Vargaftic, N.B., Vonogradov, Y.K., Yargin, V.S.: Handbook of Physical Properties of Liquids and Gases, 3rd Augmented and revised edition. Begel House, New York (1996)Google Scholar
  177. Vargaftic, N.B., Voljak, L.D.: Thermodynamic properties of alkali metal vapors at low pressures. In: Ohse, R.W. (ed.) Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell Scientific Publishing, Oxford (1985)Google Scholar
  178. Veleckis, E., Dhar, S.K., Cafasso, F.R., Feder, H.M.: Solubility of helium and argon in liquid sodium. J. Phys. Chem. 75(18), 2832–2838 (1971)CrossRefGoogle Scholar
  179. Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9 (1998)Google Scholar
  180. Lead-Bismuth Handbook, Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technology. Nuclear Energy Agency, NEA No. 6195 (2007) ISBN 978-92-64-99002-9Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ErlangenGermany

Personalised recommendations