Skip to main content

Thermo-Physical Properties for Severe Accident Analysis

  • Chapter
  • 2922 Accesses

Abstract

Several modern aspects of the severe accident analysis can not be understood if the engineer does not have accurate information of the material properties for the participating structural materials in solid, in liquid and in some cases in gaseous states. Chapter 17 contains valuable sets of thermo-physical and transport properties for severe accident analysis for the following materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth and leadbismuth alloys. The emphasis is on the complete and consistent thermo dynamical sets of analytical approximations appropriate for computational analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chu, C.C., Sieniki, J.J., Beker Jr., L.: Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Theophanous, T.G., et al. (eds.) In-vessel Coolability and Retention of a Core Melt, DOE/ID-10460, vol. 1. U.S. Department of Energy Report (October 1996)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, New York (2007)

    Google Scholar 

  • McCahan, S., Shepherd, J.E.: A thermodynamic model for aluminum-water interaction. In: Proc. of the CSNI Specialists Meeting on Fuel-Coolant Interaction, Santa Barbara, California, NUREC/CP-0127 (January 1993)

    Google Scholar 

  • Allison, C.M., et al.: SCDAP/RELAP/MOD3.1 Code manuals, MATPRO – A library of materials properties for light-water-reactor accident analysis, NUREG/CR-6150, EGG-2720, vol. 4 (1993)

    Google Scholar 

  • Brassfield, H.C., et al.: Recommended property and reactor kinetics data for use in evaluating a light-water-coolant reactor loss-of-coolant incident involving Zircaloy-4 or 304-SS-clad UO2, GEMP-482 (April 1968)

    Google Scholar 

  • Breitung, W., Reil, K.O.: In-pile vapor pressure measurements on UO2 and (U, Pu)O2, Kernforschungszentrum Karlsruhe, KfK 3939 (August 1985)

    Google Scholar 

  • Bober, M., Singer, J.: Vapor pressure determination of liquid UO2 using a boiling point technique. Nucl. Sci. Eng. 97, 344–352 (1987)

    Google Scholar 

  • Chawla, T.C., et al.: Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis. Nuclear Engineering and Design 67, 57–74 (1981)

    Google Scholar 

  • Chu, C.C., Sieniki, J.J., Beker Jr., L.: Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Teofanous, T.G., et al. (eds.) In-vessel Coolability and Retention of a Core Melt, DOE/ID-10460, vol. 1 (October 1996)

    Google Scholar 

  • Gmelin: Handbook of Inorganic Chemistry, 8th edn., suppl. vol. C5, Chap. 4.8.6: Thermal conductivity. Springer, Berlin (1986)

    Google Scholar 

  • Fink, J.K., Chasanov, M.G., Leibowitz, L.: Thermodynamic properties of uranium dioxide, ANL-CEN-RSD-80-3 (April 1981a)

    Google Scholar 

  • Fink, J.K., Chasanov, M.G., Leibowitz, L.: Thermo-physical properties of uranium dioxide. J. Nucl. Mater. 102, 17–25 (1981b)

    Article  Google Scholar 

  • Fink, J.K., Chasanov, M.G., Leibowitz, L.: Properties for safety analysis, ANL-CEN-RSD-82-2 (1982)

    Google Scholar 

  • Fink, J.K., Leibowitz, L.: An analysis of measurements of the thermal conductivity of liquid urania. High Temperatures-High Pressures 17, 17–26 (1985)

    Google Scholar 

  • Fischer, E.A.: A new evaluation of the urania equation of state based on recent vapor pressure. Nucl. Sci. Eng. 101, 97–116 (1989)

    Google Scholar 

  • Fischer, E.A.: Fuel evaluation of state data for use in fast reactor accident analysis codes, KfK 4889, Kernforschungszentrum Karlsruhe (May 1992)

    Google Scholar 

  • Hagrman, D.L., Laats, E.T., Olsen, C.S.: In: Hohorst, J.K. (ed.) SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990)

    Google Scholar 

  • Hendricks, R.C., Baron, A.K., Peller, C.P.: GASP – A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. NASA technical note NASA TN D-7806, Washington, DC (February 1975)

    Google Scholar 

  • Hohorst, J.K. (ed.): SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990)

    Google Scholar 

  • Karim, S.: PhD Thesis, MEI Moscow (1976)

    Google Scholar 

  • Karow, H.U.: Thermodynamic state, specific heat and enthalpy function of saturated UO2 vapor between 3000K and 5000K. Kernforschungszentrum Karlsruhe, KfK 2390 (February 1977)

    Google Scholar 

  • Kim, et al.: Measurements of thermal diffusivity of molten UO2. In: Proceedings of the 7th Symposium on Thermophysical Properties at the National Bureau of Standards, Gaithersberg, MD, CONF 770537-3, May 12, pp. 338–343 (1977)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics. Fundamentals, vol. 1. Springer, Berlin (2007)

    Google Scholar 

  • Kusnezov, V.D., Katkovskii, E.A.: Teplovoj I gidravlicheskij raschet na EVM reaktorov s vodoj pod davleniem. MEI Moscow (1975)

    Google Scholar 

  • Leibowitz, L., et al.: Properties for LMFBR safety analysis, ANL-CEN-RSD-76-1 (April 1976)

    Google Scholar 

  • Lyon, W.F., Baily, W.E.: The solid-liquid diagram of the UO2-PO2 system. J. Nucl. Mater. 22, 332 (1976)

    Article  Google Scholar 

  • Malang, S.: Simulation of nuclear fuel rods by using process-computer controlled power for indirect electrically heated rods, Oak Ridge National Laboratory, ORNL-TM-4712, GEMP-482 (1975)

    Google Scholar 

  • Marao, A., Kalitka, T., Kalitka, A., Uspuras, E.: Adaptation of the FEMAXI-6 code and RBMK fuel rods model testing employing the best estimate approach. Kerntechnik 75(3), 72–80 (2010)

    Article  Google Scholar 

  • Redlich, O., Kwong, J.N.S.: On the thermodynamics of solutions. V, An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244 (1949)

    Article  Google Scholar 

  • Reymann, G.A.: Specific heat capacity and enthalpy. In: Hohorst, J.K. (ed.) SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990)

    Google Scholar 

  • Riedel, L.: Eine neue universelle Dampfdruckformel. Chem.-Ing. Tech. 26, 83–89 (1954)

    Article  Google Scholar 

  • Cordfunke, E.H.P., Konings, R.J.M.: Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam (1990)

    Google Scholar 

  • Chu, C.C., Sieniki, J.J., Beker Jr., L.: Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Teofanous, T.G., et al. (eds.) In-Vessel Coolability and Retention of a Core Melt, DOE/ID-10460, vol. 1, U.S. Department of Energy Report (October 1996)

    Google Scholar 

  • Gilchrist, K.E.: Thermal property measurements on Zirkaloy-2 and associated oxide layers. J. Nucl. Mater. 62, 257–264 (1976)

    Article  Google Scholar 

  • Hagrman, D.L.: In: Hohorst, J.K. (ed.) SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990)

    Google Scholar 

  • Hammer, R.R.: Zircaloy-4, uranium dioxide and materials formed by their interaction, A literature review with extrapolation of physical properties to high temperatures, IN-1093 (September 1967)

    Google Scholar 

  • Hohorst, J.K. (ed.): SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990)

    Google Scholar 

  • Brandes, E.A. (ed.): Smithels metals reference book, 6th edn. Butterworth and Co., London (1983)

    Google Scholar 

  • Cao, G., et al.: In situ measurements of spectral emissivity of materials for very high temperature reactors. Nuclear Technology 175, 460–467 (2011)

    Google Scholar 

  • Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn. part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9, American Chemical Society (1998)

    Google Scholar 

  • Chawla, T.C., et al.: Thermophysical properties of mixed oxide fuel and stainless steel type 316 for use in transition phase analysis. Nuclear Engineering and Design 67, 57–74 (1981)

    Article  Google Scholar 

  • Chu, C.C., Sieniki, J.J., Beker Jr., L.: Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Teofanous, T.G., et al. (eds.) In-Vessel Coolability and Retention of a Core Melt, DOE/ID-10460, vol. 1. U.S. Department of Energy Report (October 1996)

    Google Scholar 

  • Fischer, E.A.: A new evaluation of the urania equation of state based on recent vapor pressure. Nucl. Sci. Eng. 101, 97–116 (1989)

    Google Scholar 

  • Fischer, E.A.: Fuel evaluation of state data for use in fast reactor accident analysis codes, KfK 4889, Kernforschungszentrum Karlsruhe (May 1992)

    Google Scholar 

  • Fortov, V.E., Dremin, A.N., Leont’ev, A.A.: Evaluation of the parameters of the critical point. High Temp. 13, 984–992 (1975)

    Google Scholar 

  • Fraser, M.E., Lu, W.K., Hamielec, A.E., Murarka, R.: Surface tension measurements on pure liquid iron and nickel by an oscillating drop technique. Metallurgical and Materials Transactions B 2(3), 817–823 (1971)

    Google Scholar 

  • Hohorst, J.K. (ed.): SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, ECG-2555, vol. 4 (1990)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, Berlin (2007)

    Google Scholar 

  • Kurz, W., Lux, B.: The sound velocity of iron and iron alloys in solid and fluid states. High Temp. – High Pressure 1, 387–399 (1969) (in German)

    Google Scholar 

  • Leibowitz, L., et al.: Properties for LMFBR safety analysis, ANL-CEN-RSD-76-1 (April 1976)

    Google Scholar 

  • Ostensen, R.W., Murphy, W.F., Wrona, B.J., Dietrich, L.W., Florek, J.C.: Intrusion of molten steel into cracks in solid fuel in transient-undercooling accident in liquid-metal fast breeder reactor. Nucl. Technol. 36, 200–214 (1977)

    Google Scholar 

  • Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)

    Google Scholar 

  • Redlich, O., Kwong, J.N.S.: On the thermodynamics of solutions. V, An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244 (1949)

    Article  Google Scholar 

  • Richter, F.: Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen Stahleisen-Sonderberischte Heft 8. Verlag Stahleisen M.B.H.-Düsseldorf (1983)

    Google Scholar 

  • Teofanous, T.G., et al.: In-vessel coolability and retention of a core melt, DOE/ID-10460, vol. 1. U.S. Department of Energy Report (October 1996)

    Google Scholar 

  • VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang, 6th Aufl. VDI-Verlag, Düsseldorf (1991)

    Google Scholar 

  • Bonnell, D.W.: Property measurements at high temp., levitation calorimetry studies of liquid metals. Ph.D. Thesis Rice University, Houston, TX (1972)

    Google Scholar 

  • Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9, American Chemical Society (1998)

    Google Scholar 

  • Cordfunke, E.H.P., Konings, R.J.M.: Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam (1990)

    Google Scholar 

  • Fink, J.K., Leibowitz, L.: Thermal conductivity of zirconium. J. Nucl. Mater. 226, 44–50 (1995)

    Article  Google Scholar 

  • Hohorst, J.K. (ed.): SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555, vol. 4 (1990)

    Google Scholar 

  • Kelly, J.E., Kao, S.P., Kazimi, M.S.: THERMIT-2: A two fluid model for light water reactor subchannel transient analysis. MIT Energy Laboratory Electric Utility Program, Report No. MIT-EL.81-014 (April 1981)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, Berlin (2007)

    Google Scholar 

  • Krishnan, S., Weber, J.K.R., Anderson, C.D., Nordine, P.C.: Spectral emissivity and optical properties at l=632.8 nm for liquid uranium and zirconium at high temperature. J. Nucl. Mater. 203, 112–121 (1993)

    Article  Google Scholar 

  • Marao, A., Kalitka, T., Kalitka, A., Uspuras, E.: Adaptation of the FEMAXI-6 code and RBMK fuel rods model testing employing the best estimate approach. Kerntechnik 75(3), 72–80 (2010)

    Article  Google Scholar 

  • Rassohin, N.T., Gradusov, G.H., Gorbatych, V.P.: Korosija splava zirkonija – 1% niobija v uslovijah teploperedaci. Trudy MEI, Vyp. 83 (1971)

    Google Scholar 

  • TAPP, A Database of Thermo-Chemical and Physical Properties. ES Microware, Hamilton, Ohio (1994)

    Google Scholar 

  • Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9, American Chemical Society (1998)

    Google Scholar 

  • Hohorst, J.K.: SCDAP/RELAP5/M002 Code Manual. MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, ECG-2555, vol. 4 (1990)

    Google Scholar 

  • Kammer, C.: Aluminium-Taschenbuch, 15th Aufl. Aluminium-Verlag, Düsseldorf (1995)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, Berlin (2007)

    Google Scholar 

  • Touloukian, Y.S., DeWitt, D.P.: Thermo-Physical Properties of Matter. Plenum Press, New York (1972)

    Google Scholar 

  • Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn. McGraw-Hill, New York (1985)

    Google Scholar 

  • Barin, I., Knacke, O.: Thermo-Chemical Properties of Inorganic Substances. Springer, Heidelberg (1973)

    Google Scholar 

  • Bates, J.L., McNeilly, C.E., Rasmussen, J.J.: Properties of Molten Ceramics. Batelle Memorial Institute, Richland, Washington BNWL-SA-3529 (1971)

    Google Scholar 

  • Biomquist, R.A., Fink, J.K., Leibowitz, L.: Viscosity of molten alumina. Ceram. Bull. 5, 522 (1978)

    Google Scholar 

  • Ceramic Nist (2007), http://www.ceramics.nist.gov/srd/summary/scdaos.htm

  • Elyutin, V.P., Mitin, B.C., Nagibin, Y.A.: Properties of liquid aluminum oxide. Fiz. Aerodispersnykh Syst. 7, 104–109 (1972)

    Google Scholar 

  • Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007)

    Book  Google Scholar 

  • Kuhn, D., Moschke, M., Werle, H.: Freezing of aluminum oxide and iron flowing upward in circular quartz glass tubes, KfK 3592 (October 1983)

    Google Scholar 

  • McCahan, S., Shepherd, J.E.: A thermodynamic model for aluminum-water interaction. In: Proceedings of the CSNI Specialists Meeting on Fuel-Coolant Interaction, Santa Barbara, California, NUREC/CP-0127 (January 1993)

    Google Scholar 

  • Peppler, W., Menzenhauer, P., Will, H.: Simulated fuel melt movement and relocation intwo seven-pin-bundle geometries, KfK 3591 (July 1983)

    Google Scholar 

  • Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)

    Google Scholar 

  • Samsonov, G.V. (ed.): The Oxide Handbook. IFI/PLENUM, New York (1973)

    Google Scholar 

  • Samsonov, G.V. (ed.): The Oxide Handbook, 2nd edn. IFI/PLENUM, New York (1982)

    Google Scholar 

  • Shpil’rain, E.E., Yakimovich, K.A., Tsitsarkin, A.F.: Experimental study of the density of liquid alumina up to 2750°C. High Temp. – High Pressures 5, 191–198 (1973)

    Google Scholar 

  • Touloukian, Y.S. (ed.): Recommended values of the thermo-physical properties of eight alloys, major constituents and their oxides thermo-physical properties research center, Purdue University, Lafayette, Indiana (February 1966)

    Google Scholar 

  • Touloukian, Y.S., Buyco, E.H.: Thermo-Physical Properties of Matter, Specific Heat/Nonmetallic Solids. DATA TABLE NO. 62-A, vol. 5. IFI/PLENUM, New York (1970)

    Google Scholar 

  • Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermo-Physical Properties of Matter, Thermal Conductivity/Nonmetallic Solids. DATA TABLE no 32, vol. 2. IFI/PLENUM, New York (1970)

    Google Scholar 

  • Turnay, K.: Thermophysicalische Eigenschaften des Aluminiumoxides und Quarzglases, Research Center Karlsruhe (Mai 1985)

    Google Scholar 

  • Urbain, G.: Viscosite de 1’alumine liquide. Rev. Int. Hautes Temper. Refract 19, 55–57 (1982)

    Google Scholar 

  • Bityukov, V.K., Petrov, V.A.: Optical quartz glass as a reference substance for the thermal conductivity coefficient of partially transparent materials. High Temperature 38(2), 293–299 (2000)

    Article  Google Scholar 

  • Bityukov, V.K., Petrov, V.A., Stepanov, S.V.: Determination of the coefficient of thermal conductivity of silica glass by the contactless flat-plate method at 950-1500K. High Temp. 21(6), 840 (1984); Teplofiz. Vys. Temp. 21(6), 1099 (1983)

    Google Scholar 

  • Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007a)

    Book  Google Scholar 

  • Krzhizhanovskii, R.E., Shtern, Z.Y.: Thermo-physical properties of nonmetallic materials, Energija, Leningrad (1973)

    Google Scholar 

  • Men’, A.A., Chechel’nitskii, A.Z.: Teplofis. Vys. Temp. 11(6), 1309 (1973)

    Google Scholar 

  • Memsnet (2007), http://www.memsnet.org/material/silicondioxidesio2film/

  • Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn. McGraw-Hill, New York (1985)

    Google Scholar 

  • Samsonov, G.V. (ed.): The Oxide Handbook, 2nd edn. IFI/PLENUM, New York (1982)

    Google Scholar 

  • Touloukian, Y.S. (ed.): Recommended values of the thermo-physical properties of eight alloys, major constituents and their oxides thermo-physical properties research center, Purdue University, Lafayette, Indiana (February 1966)

    Google Scholar 

  • Touloukian, Y.S., Buyco, E.H.: Thermo-Physical Properties of Matter. Specific Heat/Nonmetallic Solids. DATA TABLE NO. 62-A, vol. 5. IFI/PLENUM, New York (1970)

    Google Scholar 

  • Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermo-Physical Properties of Matter, Thermal Conductivity/Nonmetallic Solids. DATA TABLE no 32, vol. 2 IFI/PLENUM, New York (1970)

    Google Scholar 

  • Touloukian, Y.S., Ho, C.Y. (eds.): Thermo-physical properties of selected aerospace materials, Part I, Thermo-physical and Electronic Properties Information Center, CINDAS – Purdue University (1976)

    Google Scholar 

  • Turnay, K.: Thermophysicalische Eigenschaften des Aluminiumoxides und Quarzglases, Research Center Karlsruhe (Mai 1985)

    Google Scholar 

  • Barin, I., Knacke, O.: Thermochemical Properties of Inorganic Substances. Springer, New York (1973)

    Google Scholar 

  • Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007a)

    Book  Google Scholar 

  • Lide, D.R., Frederikse, H.P.R. (eds.): CRC Handbook of Chemistry and Physics, 78th edn. CRC Press, New York (1997)

    Google Scholar 

  • Massalski, T.B. (ed.): Binary Alloy Phase Diagrams ASM International, 2nd edn. ASM International, Materials Park, Ohio (1992)

    Google Scholar 

  • MATPRO, SCDAP/RELAP5/MOD2 Code Manual. MATPRO – A Library of Materials Properties for Light- Water-Reactor Accident Analysis, NUREG/CR-5273, vol. 4 (1990)

    Google Scholar 

  • Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)

    Google Scholar 

  • Powers, D.A., Brockmann, J.E., Shiver, A.W.: VANESA: A mechanistic model of radionuclide release and aerosol generation during core debris interactions with concrete, NUREG/CR-4308 (July 1986)

    Google Scholar 

  • Reimann, M., Stiefel, S.: The WECHSL-Mod2 Code: A computer program for the interaction of a core melt with concrete including the long term behavior – Model Description and User’s Manual, KfK 4477 (June 1989)

    Google Scholar 

  • Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter. Thermal Conductivity – Nonmetallic Solids, vol. 2. IFI/PLENUM, New York (1970)

    Google Scholar 

  • Touloukian, Y.S., DeWitt, D.P.: Thermophysical Properties of Matter. Plenum Press, New York (1972)

    Google Scholar 

  • Touloukian, Y.S., Kirby, R.K., Taylor, R.E., Lee, T.Y.R.: Thermophysical Properties of Matter. Thermal Expansion – Nonmetallic Solids, vol. 13. IFI/PLENUM, New York (1977)

    Google Scholar 

  • Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9, American Chemical Society (1998)

    Google Scholar 

  • Cordfunke, E.H.P., Konings, R.J.M.: Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam (1990)

    Google Scholar 

  • Elyutin, V.P., Kostikov, V.I., Pen’kov, I.A.: Effect of carbon on the surface tension and density of liquid vanadium, niobium, and molybdenum. Poroshovaya Metallurgya 93(9), 46–51 (1970)

    Google Scholar 

  • Kolev, N.I.: Multiphase Flow Dynamics, Fundamentals, vol. 1. Springer, Berlin (2007)

    Google Scholar 

  • Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)

    Google Scholar 

  • Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter. Thermal Conductivity – Metallic Elements and Alloys, vol. 1. IFI/PLENUM, New York (1970)

    Google Scholar 

  • Touloukian, Y.S., DeWitt, D.P.: Thermo-Physical Properties of Matter. Plenum Press, New York (1972)

    Google Scholar 

  • Aesar, A.: Bestellkatalog Forschungschemikalien. Metalle and Materialien 1999–2000 (1999)

    Google Scholar 

  • Cordfunke, E.H.P., Konings, R.J.M.: Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam (1990)

    Google Scholar 

  • Cox, J.D., Wagman, D.D., Medvedev, V.A.: CODATA Key Values for Thermodynamics. Hemisphere Publ. Corp., New York (1989)

    Google Scholar 

  • Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veyts, I.V., Medvedev, V.A., Kachkuruzov, G.A., Yungman, V.S.: Termodinamicheskie Svoistva Individual’nykh. Tom III. Nauka, Moskva (1981)

    Google Scholar 

  • Kelly, K.K.: J. Am. Chem. Soc. 63, 1137 (1941)

    Google Scholar 

  • Kerr, E.C., Hersh, N., Johnston, H.L.: J. Am. Chem. Soc. 72, 4738 (1950)

    Article  Google Scholar 

  • Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007)

    Book  Google Scholar 

  • Kracek, F.C., Morey, G.W., Merwin, H.E.: Am. J. Sci. 35, 143 (1938)

    Google Scholar 

  • Kruh, R., Stern, K.H.: The effect of solutes on the properties and structure of liquid boric oxide. J. Am. Chem. Soc. 78, 278–281 (1956)

    Article  Google Scholar 

  • Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)

    Google Scholar 

  • Schmidt, N.E.: Zh. Neorg. Khim. 11, 441 (1966); Russ. J. Inorg. Chem. 11, 241

    Google Scholar 

  • Touloukian, Y.S., Powell, R.W., Ho, C.Y., Klemens, P.G.: Thermophysical Properties of Matter. Thermal Conductivity – Nonmetallic Solids, vol. 2. IFI/PLENUM, New York (1970)

    Google Scholar 

  • Bottomley, P.D., Coquerelle: Metallurgical examination of bore samples from the three mile island unit 2 reactor core. Nuclear Technology 87, 120–136 (1989)

    Google Scholar 

  • Chong, J.S., Chrisiansen, E.B., Baer, A.D.: Rheology of concentrated suspensions. J. Appl. Polym. 15, 2007–2021 (1971)

    Article  Google Scholar 

  • Fink, J.K., Chasanov, M.G., Leibowitz, L.: Thermodynamic properties of uranium dioxide, ANL-CEN-RSD-80-3 (April 1981a)

    Google Scholar 

  • Fink, J.K., Chasanov, M.G., Leibowitz, L.: Thermo-physical properties of uranium dioxide. J. of Nuclear Materials 102, 17–25 (1981b)

    Article  Google Scholar 

  • Hayward, P.J., George, I.M.: Dissolution of UO2 in Zirkaloy-4 Part-4: Phase evolution during dissolution and cooling of, to 2500°C specimen (ZrO0.54-UO2), vol. 232 pp. 13–22 (1966)

    Google Scholar 

  • Hodge, S.A., Ott, L.J.: Interpretation of the XR2-1 experiment and characteristics of the BWR lower plenum debris bed. In: Proc. of the Int. Top. Meeting on Advanced Reactor Safety, Orlando, Florida, June 1-5, vol. 1 (1997)

    Google Scholar 

  • Juenke, E.F., Whitte, J.F.: Zr-UO2, Report GEMP-731 (1969)

    Google Scholar 

  • Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007a)

    Book  Google Scholar 

  • Moshev, V.V., Ivanov, V.A.: Rheological behavior of concentrated non-newtonian suspensions. Nauka, Moskva (1990)

    Google Scholar 

  • Politis, C.: Untersuchungen im Dreistoffsystem Uran-Zirkon-Sauerstoff, ZrO0.51-UO2, Kernforschungszentrum Karlsruhe, KfK Report 2167 (October 1975)

    Google Scholar 

  • Ramacciotti, M., Journeau, C., Sudreau, F., Cognet, G.: Viscosity models for corium melts. In: Ninth Int. Top. Meeting on Nuclear Thermal Hydraulics (NURETH-9), San Francisco, October 3-8 (1999)

    Google Scholar 

  • Romberger, K.A., Baes Jr., C.F., Stone, H.H.: Phase equilibrium studies in the UO2-ZrO2 system. J. Inorg. Nucl. Chem. 29, 1619–1630 (1967)

    Article  Google Scholar 

  • Skokan, A.: High temperature phase relations in the U-Zr-O system, ZrO0.43-UO2. In: 5th Int. Meeting on Thermal Nuclear Reactor Safety, Karlsruhe, September 9-13, pp. 1035–1042 (1984)

    Google Scholar 

  • Spindler, B., Vateau, J.M.: The simulation of melt spreading with THEMA code Part: 1 Model, assessment strategy and assessment against analytical and numerical solutions. Nuclear Engineering and Design 236, 415–424 (2006a)

    Article  Google Scholar 

  • Spindler, B., Vateau, J.M.: The simulation of melt spreading with THEMA code Part: 2 Assessment against spreading experiments. Nuclear Engineering and Design 236, 425–441 (2006b)

    Article  Google Scholar 

  • Tim, K.T., Olander, D.R.: Dissolution of uranium dioxide by molten zitcaloy. Journal of Nuclear Materials 154, 85–101 (1988)

    Article  Google Scholar 

  • Borishanskij, V.M., Kutateladze, S.S., Novikov, I.I., Fedynskij, O.S.: Jidkometaliceskie teplonositeli (Liquid metal coolants), Atomisdat (1976)

    Google Scholar 

  • Brandhurst, D.H., Buchanan, A.S.: Surface properties of liquid sodium and sodium-potassium alloy in contact with metal oxide surfaces. Aust. J. Chem. 14(3), 397–408 (1961)

    Article  Google Scholar 

  • Bystrov, P.I., Kagan, D.N., Krechetova, G.A., Shpilrain, E.E.: Zhidkometallicheskie teplonositeli dlya teplovyh trub i energeticheskih ustanovok (Liquid Metal Heat-Carriers for Heat Pipes and Power Facilities). Nauka Press, Moscow (1988)

    Google Scholar 

  • Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9 (1998)

    Google Scholar 

  • Cordfunke, E.H.P., Konings, R.J.M. (eds.): Thermochemical Data for Reactor Materials and Fusion Products. Nord Holland, Amsterdam (1990)

    Google Scholar 

  • Dwyer, O.E.: Boiling Liquid Metal Heat Transfer. American Nuclear Society, Hinsdale (1976)

    Google Scholar 

  • Ewing, C.T., Stone, J.P., Spann, J.R., Steinkuller, E.W., Williams, D.D., Miller, R.R.: High-Temperature Properties of Potassium, NRL-6233. Naval Research Laboratory, Washington, DC (September 1965)

    Google Scholar 

  • Ewing, C.T., Stone, J.P., Spann, J.R., Miller, R.R.: Molecular association in Sodium, Potassium and Cesium vapors at high temperature. J. Phys. Chem. 71(3), 473–477 (1967)

    Article  Google Scholar 

  • Fink, J.K., Chasanov, M.G., Leibowitz, L.: Properties for Safety Analysis, ANL-CEN-RSD-82-2 (1982)

    Google Scholar 

  • Golden, G.H., Tokar, J.V.: Thermophysical Properties of Sodium. ANL-7323. Argonne National Laboratory, Argonne (1967)

    Google Scholar 

  • Gurvich, L.V., Yorish, V.S., Khandamirova, N.E., Yungman, V.S.: Ideal gaseous state. In: Ohse, R.W. (ed.) Handbook of Thermodynamic and Transport Properties of Alkali Metals. Blackwell Scientific Publishing, Oxford (1985)

    Google Scholar 

  • Hame, W.: Aufbereitung der Stoffunktionen für Natrium; Einsatz in COMIX-Referenzversion KfK auf M7890 und Vektorrechner, PTF report delivered to KfK (December 1986)

    Google Scholar 

  • Ivanovskij, M.N., Sorokin, V.P.: Subbotin VI Isparenie I kondensazija metalov. Atomizdat, Moskva (1976)

    Google Scholar 

  • Kolev, N.I.: Multiphase flow dynamics, vol. 1. Springer, Berlin (2007a)

    Book  Google Scholar 

  • Kiriyanenko, A.A., Makarova, O.P., Romanov, V.D., Solov’ev, A.N.: Experimental investigation of the surface tension of liquid sodium. J. Appl. Mech. Tech. Phys. 59(4), 121–122 (1965)

    Article  Google Scholar 

  • Makansi, M., Selke, W.A., Bonilla, C.F.: Thermodynamic properties of sodium. J. Chem. Eng. Data 5(4), 441–452 (1960)

    Article  Google Scholar 

  • Miller, D., Cohen, A.B., Dickerman, C.E.: Estimation of vapor and liquid density and heat of vaporization of alkali metal to the critical point. In: International Conference of Safety of Fast Breeder Reactors, Aix-en Provence, France (September 1967)

    Google Scholar 

  • Mozgovoi, A.G., Roshchupkin, V.V., Pokrasin, M.A., Fokin, L.R., Handomirova, N.E.: Lithium, sodium, potassium, rubidium, cesium. Saturation Vapor Pressure at High Temperature. GSSSD 112-87. Standards Press, Moscow (1988)

    Google Scholar 

  • Novikov, I.I., Roshchupkin, V.V., Trelin, Y.S., Tsiganova, T.A., Mozgovoi, A.G.: Review series an thermophysical properties of substances, no. 6(32), p. 65. Institute of Hi, Temperatures Acad. Sci. USSR, Moscow (1981)

    Google Scholar 

  • Padilla Jr., A.: High-Temperature Thermodynamic Properties of Sodium, HEDL-TME 77-27. Hanford Engineering Development Laboratory, Richland (1978)

    Google Scholar 

  • Perry, R.H., Green, D.: Perry’s Chemical Engineer’s Handbook, 6th edn., pp. 3–285. McGraw-Hill, New York (1985)

    Google Scholar 

  • Petiot, F., Seiler, J.-M.: Physical properties of sodium. A contribution to the estimation of the critical coordinates. In: 10th Liquid Metal Boiling Working Group, Katlsruhe (October 1982)

    Google Scholar 

  • Shpilrain, E.E., Yakimovich, K.A., Fomin, V.A., Skovorod’ko, S.N., Mozgovoi, A.G.: Handbook of Thermodynamic and Transport Properties of Alkali Metals, p. 753. Blackwell Scientific Publications, Oxford (1994)

    Google Scholar 

  • Stone, J.P., Ewing, C.T., Spann, J.R., Steinkuller, E.W., Williams, D.D., Miller, R.R.: High-Temperature Properties of Sodium. NRL-6241, Naval Research Laboratory, Washington, DC (1965)

    Google Scholar 

  • Stone, J.P., Ewing, C.T., Spann, J.R., Steinkuller, E.W., Williams, D.D., Miller, R.R.: High-temperature properties of sodium. J. Chem. Eng. Data 11, 309 (1966)

    Article  Google Scholar 

  • Thormeier, K.: Solubility of noble gases in liquid sodium. Nucl. Eng. Design 14, 69 (1970)

    Article  Google Scholar 

  • Trelin, J.S., Vasiljev, I.I., Rostchupkin, B.B.: Atomaja Energia 9(5), 410 (1960)

    Google Scholar 

  • Vargaftic, N.B., Vonogradov, Y.K., Yargin, V.S.: Handbook of Physical Properties of Liquids and Gases, 3rd Augmented and revised edition. Begel House, New York (1996)

    Google Scholar 

  • Vargaftic, N.B., Voljak, L.D.: Thermodynamic properties of alkali metal vapors at low pressures. In: Ohse, R.W. (ed.) Handbook of Thermodynamic and Transport Properties of Alkali Metals, Blackwell Scientific Publishing, Oxford (1985)

    Google Scholar 

  • Veleckis, E., Dhar, S.K., Cafasso, F.R., Feder, H.M.: Solubility of helium and argon in liquid sodium. J. Phys. Chem. 75(18), 2832–2838 (1971)

    Article  Google Scholar 

  • Wikipedia (2007), http://en.wikipedia.org/wiki/Sodium

  • Chase Jr., M.W.: NIST-JANAF Thermochemical Tables, 4th edn., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9 (1998)

    Google Scholar 

  • Lead-Bismuth Handbook, Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technology. Nuclear Energy Agency, NEA No. 6195 (2007) ISBN 978-92-64-99002-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Ivanov Kolev .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolev, N.I. (2015). Thermo-Physical Properties for Severe Accident Analysis. In: Multiphase Flow Dynamics 5. Springer, Cham. https://doi.org/10.1007/978-3-319-15156-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15156-4_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15155-7

  • Online ISBN: 978-3-319-15156-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics