Advertisement

External Cooling of Reactor Vessels during Severe Accident

  • Nikolay Ivanov Kolev

Abstract

Chapter 16 is devoted to the so called external cooling of reactor vessels during severe accident. It is a technology allowing arresting the melt inside the vessel of some initial conditions are fulfilled. First the state of the art is presented. Then a brief description of the phenomenology leading to melt in the lower head is discussed: dry core melting scenario, melt relocation, wall attack, focusing effect. Brief mathematical model description is given appropriate for a set of model assumptions. The model describes: the melt pool behavior, the two-dimensional heat conduction through the vessel wall, the total heat flow from the pools into the vessel wall, the vessel wall ablation, the heat fluxes, the crust formation and the buoyancy driven convection. Solution algorithm is provided for a set of boundary conditions adequate for real situations. A summary of the state of the art regarding the critical heat flux for externally flowed lower head geometry is provided. On a several practical applications different effects are demonstrated: the effect of vessel diameter, the effect of the lower head radius, the effect of the relocation time, the effect of the mass of the internal structures. Varying some important parameters characterizing the process the difference between high powered pressurized- and boiling water reactor vessel behavior is demonstrated.

Keywords

Heat Transfer Heat Flux Heat Transfer Coefficient Reactor Vessel Critical Heat Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANS: ANS Standards Committee, Decay Energy Release Rates following Shutdown of Uranium-fueled Thermal Reactors, American Nuclear Society Draft Report: ANS-5.1 (October 1971) Google Scholar
  2. ANS: ANS Standards Committee, Decay Energy Release Rates following Shutdown of Uranium-fueled Thermal Reactors, American Nuclear Society Draft Report: ANS-5.1 (N18.6) (October 1973) Google Scholar
  3. ANS: ANS Standards Committee, Decay Heat Power in Light Water Reactors American Nuclear Society Report: ANSI/ANS-5.1-1979 (August 1979) Google Scholar
  4. ANS: ANS Standards Committee, Decay Heat Power in Light Water Reactors (Revision of ANSI/ANS-5.1-1979;R1985), American Nuclear Society Report: ANS-5.1 (1994) Google Scholar
  5. Asfa, F.J., Dhir, V.K.: Natural circulation heat transfer in volumetrically heated spherical pools. In: Proceedings of the Workshop on Large Molten Poll Heat Transfer, NEA/CSNI/R (1994), vol. 11, pp. 199–205 (1994)Google Scholar
  6. Asfa, F.Y., Frantz, B., Dhir, V.K.: Experimental investigation of natural convection heat transfer in volumetrically heated spherical segments. J. Heat Transfer 18(2), 31–37 (1996)CrossRefGoogle Scholar
  7. Baehr, H.D., Stephan, K.: Wärme- und Stoffübertragung, vol. 4. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. Bejan, A.: Convection Heat Transfer. Jon Wiley & Sons, New York (1984)zbMATHGoogle Scholar
  9. Benard, H.: Les tourbillons cellulaires dans une nappe liquide. Revue Générale des Sciences 1271, 1309–1328 (1900)Google Scholar
  10. Bonnet, J.M.: Thermal hydraulic phenomena in corium pools: the BALI experiment. In: SARJ Meeting, Tokyo, Japan, November 4-6 (1998)Google Scholar
  11. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford Science Publications, Clarendon Press, Oxford (1996)Google Scholar
  12. Chen, L.T.: Heat transfer to pool-boiling Freon from inclined heating plate. Lett. Lett. Heat Mass Transfer 5(2), 111–120 (1978)CrossRefGoogle Scholar
  13. Cheung, F.B., Haddad, K.H.: Observation of the dynamic behavior of the two phase boundary layers in the SBLB experiments. In: Proceedings of Twenty-Second Water Reactor Safety Information Meeting, NUREG/CP-0140, Bethesda, Maryland, October 24-26, vol. 2, pp. 87–111 (1994)Google Scholar
  14. Chu, T.Y., et al.: Ex-vessel boiling experiments: Laboratory- and reactor-scale testing of the flooded cavity concept for in-vessel core retention Part II: Reactor-scale boiling experiment of flooded cavity concept for in-vessel core retention. NED 169, 89–99 (1997)Google Scholar
  15. Churchill, S.W., Chu, H.H.: Correlating equations for laminar and turbulent free convection from vertical plate. Int. J. Heat Mass Transfer 18, 1323 (1975)CrossRefGoogle Scholar
  16. DIN: Normenausschuss Kerntechnik im DIN, Berechnung der Nachzerfallsleistung der Kernbrennstoffe von Leichtwasserreaktoren. DIN-Norm 25 463, von Juli (1982) Google Scholar
  17. DIN: Normenausschuss Kerntechnik im DIN, Berechnung der Nachzerfallsleistung der Kernbrennstoffe von Leichtwasserreaktoren. Nichtrezyklierte Brennstoffe, DIN-Norm 25–463, Beiblatt 1 zu Teil 1 von (May 1990) Google Scholar
  18. Dinh, T.N., Tu, J.P., Theofanous, T.G.: Two-phase natural circulation flow in AP-1000 in-vessel retention ULPU-V facility experiments. In: Proceedings of ICAP 2004, Pittsburgh, PA USA, June 13-17, Paper 4242 (2004)Google Scholar
  19. Dombrovskii, L.A., Zaichik, L.I., Zeigarnik, Y.A.: Numerical simulation of the strati-fiedcorium temperature field and melting of the reactor vessel for severe accident in nuclear power station. Thermal Eng. 45(9), 755–765 (1998)Google Scholar
  20. Dombrovskii, L.A., Zaichik, L.I., Zeigarnik, Y., Sidorov, A., Derevich, I.: Theplofiziches-kie processy pri razrushenii aktivnoj zony VVER I vzaimodejstvii koriuma s korpusom reactora. Russian Academy of Science, pp. 2–431. IVTAN Association (1999); Pre-print no 2-431Google Scholar
  21. Esmaili, H., Khatib-Rahbar, M.: Analysis of the in-vessel retention and ex-vessel fuel cool-ant interaction for AP1000, ERI/NRC 03-202, Revision 3 (2004)Google Scholar
  22. Franz, B., Dhir, V.K.: Experimental investigation of natural convection in spherical segments of volumetrically heated pools. In: ASME Proc. 1992 Nat. Heat Transfer Conf., HTD, August 9-12, vol. 192, pp. 69–76 (1992)Google Scholar
  23. Gitihnji, P.M., Soberski, R.H.: Some effect of the orientation of the heating surface in nucleate boiling. Trans. Am. Soc. Mech. Engrs., Series C, J. Heat Transfer 85(4), 379 (1963)CrossRefGoogle Scholar
  24. Globe, S., Dropkin, D.: Natural convection heat transfer in liquids confined by two horizon-tal plates and heated from below. J. Heat Transfer ASME 81(1), 24–28 (1959)Google Scholar
  25. Guo, Z., El Genk, M.S.: An experimental study of saturated pool boiling from downward facing and inclined surfaces. Int. J. Heat Mass Transfer 35(9), 2109–2117 (1992)CrossRefGoogle Scholar
  26. Halle, M., Kymäläinen, O., Tuomisto, H.: Experimental COPO II data on natural convection in homogeneous and stratified pools. In: Proc. NURETH 9, San Francisco, California, October 3-8 (1999)Google Scholar
  27. Henry, R.E., Fauske, H.K.: External cooling of a reactor vessel under severe accident con-ditions. Nucl. Eng. Design 139, 31–41 (1993)CrossRefGoogle Scholar
  28. Henry, R.E., Burelbach, J.P., Hammerslay, R.J., Henry, C.E.: Cooling of core debris within the reactor vessel lower head. Nucl. Technol. 101, 385–399 (1993)Google Scholar
  29. Herbst, O., Klemm, L.: Tests to prove the functioning of the external cooling concept of the SWR 1000. FANP /TGT1/03/en27, Erlangen (2003)Google Scholar
  30. Incopera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, 5th edn. John Wiley & Sons, New York (2002)Google Scholar
  31. Jacob, M.: Heat Transfer. John Wiley & Sons, New York (1949)Google Scholar
  32. Jahn, M., Reineke, H.H.: Free convection heat transfer with internal heat sources, calculation and measurements. In: Proceedings of 5th International Heat Transfer Conference, Paper NC2, vol. 8, pp. 74–78 (September 1974) Google Scholar
  33. Jaluria, Y.: Natural Convection Heat and Mass Transfer. Pergamon Press, Oxford (1983)Google Scholar
  34. Jeffreys, H.: The stability of a layer of fluid heated below. Phil. Mag. 2, 833–844 (1926a)CrossRefzbMATHGoogle Scholar
  35. Jeffreys, H.: Some cases of instability in fluid motion. Proc. R. Soc. London Ser. A 118, 195–208 (1926b)CrossRefGoogle Scholar
  36. Jeong, Y.H., Baek, W.-P., Chang, S.H.: CHF Experiments of the reactor vessel wall using 2-D slide test section. In: NURETH-10 International Topical Meeting on Nuclear Re-actor Thermal Hydraulics, Seoul, COREE, REPUBLIQUE DE, October 2003, vol. 152(2), pp. 162–169 (2005)Google Scholar
  37. Jergel, M., Stevenson, R.: Critical heat transfer to liquid Helium in open pools and narrow channels. Int. J. Heat Mass Transfer 12, 2099–2107 (1971)CrossRefGoogle Scholar
  38. Jones, C.A., Moore, D.R., Weiss, N.O.: Axis-symmetric convection in a cylinder. J. Fluid Mech. 73, 353–388 (1976)CrossRefzbMATHGoogle Scholar
  39. Kim, T.I., Park, H.M., Chang, S.H.: CHF experiments using 2-D curved test section with additives for IVR-ERVC strategy. Nuclear Engineering and Design 243, 272–278 (2012)CrossRefGoogle Scholar
  40. Kolev, N.I.: Sicherheitsbericht des geplanten WWER-640 (W-407) Auswertung: System für Erhaltung der Schmelze im RDB, Schmelzfänger, KWU NA-M/93/016, Project GUS-Kooperation (1993) Google Scholar
  41. Kolev, N.I.: External Cooling of VVER 640 Reactor Vessel under Severe Accident Conditions, Part 1. Buoyancy driven convection, metallic layer dynamics, wall ablation, KWU NA-M/95/E029, 18.04, Project WWER-640. Revision KWU NA-M/95/E029r (1995a) Google Scholar
  42. Kolev, N.I.: External Cooling of EPR 1500 Reactor Vessel Under Severe Accident Conditions, Part 1. Buoyancy driven convection, metallic layer dynamics, wall ablation, KWU NA-M/95/E030, 20.04, Project R&D (1995b) Google Scholar
  43. Kolev, N.I.: External Cooling of KKI 1 Reactor Vessel Under Severe Accident Conditions, Part 1. Buoyancy driven convection, metallic layer dynamics, wall ablation, KWU NA-M/95/E051, 26.07, Project R&D (1995c) Google Scholar
  44. Kolev, N.I.: External cooling of PWR reactor vessel during severe accident. Kerntechnik 61(2-3), 67–76 (1995a); Abbreviated form in Proceedings of ICONE-4, The Fourth International Conference on Nuclear Engineering, New Orleans, USA, March 8-12 (1996)Google Scholar
  45. Kolev, N.I.: Siecherheitsbehvorrichtung für einen Behälter, insbesondere für einen Reaktordruckbehälter, Patentingaber Siemens AG, 80333 München, DE, Patentschriftt DE 197 02 568 C1, F16 J 12/00 Aktenzeichen 197 02 568.4-12, Veröffentlichung der Patentierung: 18.09.1997. Erst angemeldet als: Externer Reaktorgürtel, 22.04.96, GR 96 E 3454 DE (1996) Google Scholar
  46. Kolev, N.I.: SWR 1000 Severe accident control through in-vessel melt retention by external RPV cooling. SNP NDS2/00/E2515, Project SWR1000, Erlangen (July 29, 2000)Google Scholar
  47. Kolev, N.I.: SWR 1000 Severe accident control through in-vessel melt retention by external RPV cooling. In: 9th International Conference on Nuclear Engineering, Nice, France, April 2-12 (2001)Google Scholar
  48. Kolev, N.I.: External cooling – the SWR 1000 severe accident manage-ment strategy. In: Proceedings of ICONE-12 2004, Arlington VA, USA, June 13-17 (2004); April 25–29, 2004, Paper ICONE12-49055, Presented first as SWR 1000 In-Vessel Melt Retention, STUK Meeting hold at 13.8.2003 in Helsinki, Finland; (November 17-18, 2005) Euro-pean BWR Forum, 1st Seminar on SWR1000 Design Features, Framatome ANP, Of-fenbach, Germany; (May 10-11, 2006) European BWR Forum, 2nd Seminar on SWR1000 Design Features, Oskarshamn, Sweden (2004)Google Scholar
  49. Kolev, N.I.: Multiphase Flow Dynamics. In: Thermal and mechanical interactions, vol. 2, Springer, Berlin (March 10, 2007), http://www.springeronline.com/east/3-540-22107-7
  50. Kulaki, F.A., Emara, A.A.: High Rayleigh Number Convection in Enclosed Fluid Layers with Internal Heat Sources. U.S. Nuclear Regulatory Commission Report NUREG-75/065 (1975)Google Scholar
  51. Kymäläinen, O., et al.: Critical heat flux on thick walls of large natural circulation loops. In: ANS Proceedings National Heat Transfer Conference, ANS HTC, San Diego, CA, vol. 6, pp. 44–50 (1992)Google Scholar
  52. Kymäläinen, O., Hongisto, O., Pessa, E.: COPO experiments on heat transfer from a volu-metrically heated pool, DLV1-G380-0377, Imatran Voima Oy Process Laboratory (April 1993)Google Scholar
  53. Kymäläinen, O., Tuomisto, H., Hongisto, O., Theofanous, T.G.: Heat flux distribution from a volumetrically heated pool with high Rayleigh number. In: Proc. of NURETH 6, Grenoble, France, October 5-8, pp. 48–53 (1993)Google Scholar
  54. Liu, Y.C., Donald, S.D., Cheung, F.B.: Boiling-induced flow and heat transfer in a hemi-spherical channel with tube intrusion. In: Proceedings of the 33rd National Heat Transfer Conference, Albuquerque, Mexico, August 15-17 (1999)Google Scholar
  55. Rayleigh, L.: On convective currents in a horizontal layer of fluids when the higher tem-perature is on the under side. Philos. Mag. 32, 529–546 (1916)CrossRefGoogle Scholar
  56. Lyon, D.N.: Boiling heat transfer and peak nucleate boiling fluxes in saturated liquid he-lium between lambda-point and critical temperature. Int. Adv. Cryog. Eng. 11, 371–379 (1965)Google Scholar
  57. Mayinger, F., Jahn, M., Reineke, H.H., Steinbrenner, U.: Examination of thermo-hydraulic processes and heat transfer in core melt, BMFT R8 48/1. Institut für Verfahrenstechnik der TU Hanover (1976)Google Scholar
  58. Nishikawa, K., et al.: Effect of surface configuration on nucleate boiling heat transfer. Int. J. Heat Mass Transfer 27(9), 1559–1571 (1984)CrossRefGoogle Scholar
  59. O’Brien, J.E., Hawkes, G.L.: Thermal analysis of a reactor lower head with core relocation and external boiling heat transfer. In: AIChE Symp. Ser., Heat Transfer-Minneapolis, MN, pp. 159–168 (1991)Google Scholar
  60. Park, H., Dhir, V.K.: Effect of outside cooling on the thermal behavior of a pressurized water reactor vessel lower head. Nucl. Technol. 100, 331 (1992)Google Scholar
  61. Pchelkin, I.M.: Convective and Radiation Heat Transfer, Moscow, pp. 56–64. Publ. Academy of Science USSR (1960) (in Russian)Google Scholar
  62. Rempe, J.L., et al.: Potential for AP600 in-vessel retention through ex-vessel flooding. Technical evolution report, INEEL/EXT-97-0077 (1997)Google Scholar
  63. Rouge, S.: Large scale vessel coolability in natural convection at low pressure. In: NURETH 7 Conference, vol. 169, pp. 185–195. Saratoga Springs, USA (1997); see also in Rouge S SULTAN test facility for large scale vessel coolability in natural convection at low pressure. NED, vol. 169, pp. 185–195 (1997)Google Scholar
  64. Rouge, S., Dor, I., Geffraye, G.: Reactor vessel external cooling for corium retention: SULTAN Experimental program and modeling with CATHARE code. In: Proceedings of the Workshop on Invessel Core Debris Retention and Coolability, Munich, NEA/CSNI/R, vol. 98, pp. 351–363 (March 1998)Google Scholar
  65. Schmidt, H., et al.: Tests to investigate the RPV exterior two-phase flow behavior in the event of core melt. In: 38th European Two-Phase Flow Group Meeting, Karlsruhe, Paper A6, May 29-31 (2000)Google Scholar
  66. Sonnenkalb, M.: Summary of previous German research activities and status of GRS program on invessel molten pool behavior and ex-vessel coolability, OECD/CSNI/NEA. In: Workshop on large molten pool heat transfer. Nuclear Research Centre Grenoble, France, March 9-11 (1994)Google Scholar
  67. Steinberner, U., Reineke, H.H.: Turbulent buoyancy convection heat transfer with internal heat sources. In: Proceedings 6th International Heat Transfer Conference, Toronto, Canada, vol. NC-21, pp. 305–310 (1978)Google Scholar
  68. Sulatski, A.A., Cherny, O.D., Efimov, V.K., Granovskii, V.S.: Boiling crisis at the outer surface of VVER vessel. In: Proceedings of the 11th International School-Seminar of Young Scientists and Specialists: The Physics of Heat Transfer in Boiling and Con-densation, Moskow, Russia, May 21-24 (1997)Google Scholar
  69. Sun, K.Y.: Modeling of heat transfer to nuclear steam supply system heat sink and applica-tion to severe accident sequences. Nucl. Technol. 6, 274–291 (1994)Google Scholar
  70. Theofanous, T.G., Angelini, S.: Natural convection for in-vessel retention and prototypic Rayleigh numbers. Nuclear Engineering and Design 200(1-2), 1–9 (2000)CrossRefGoogle Scholar
  71. Theofanous, T.G., Liu, C., Angelini, S., Kymäläinen, O., Tuomisto, H., Addition, S.: Experience from the first two integrated approaches to invessel retention through external cooling. In: Theofanous, T.G., Liu, C., Angelini, S., Kymäläinen, O., Tuomisto, H., Addition, S. (eds.) OECD/CSNI/NEA Workshop on Large Molten Pool Heat Transfer, March 9-11, Nuclear Research Centre, France (1994a)Google Scholar
  72. Theofanous, T.G., Syry, S., Salmassi, T., Kymäläinen, O., Tuomisto, H.: Critical heat flux through curved, downward facing, thick walls. In: OECD/CSNI/NEA Workshop on Large Molten Pool Heat Transfer, March 9-11, Nuclear Research Center, France (1994b)Google Scholar
  73. Theofanous, T.G., Liu, C., Additon, S., Angelini, S., Kymkäläinen, O., Salmassi, T.: Inves-sel coolability and retention of a core melt, DOE/ID-10460. U.S. Department of Energy (November 1994c)Google Scholar
  74. Theofanous, T.G., et al.: vessel coolability and retention of core melt. DOE/ID-10460, vol. 1 (1996a)Google Scholar
  75. Theofanous, T.G., et al.: The first results from the ACOPO experiment. In: Proceedings of the Topical Meeting on Probabilistic Safety Assessment (PSA 1996), Park Soty, Utah (September 1996b)Google Scholar
  76. Theofanous, T.G., et al.: The mechanism and prediction of the critical heat flux in inverted geometry. In: 3rd International Conference on Multiphase Flow, ICMF 1998, Lion, France, June 8-12 (1998)Google Scholar
  77. Turland, B.D., Dobson, G.P., Allen, E.J.: Models for melt-vessel interac-tions. AEA Technol. 4544(1) (November 1999)Google Scholar
  78. VDI-Wärmeatlas, Berechnungsblätter für den Wärmeübergang, Sechste Auflage, VDI Verlag, Düsseldorf (1991)Google Scholar
  79. Vishnev, I.P.: Vlijanie orientatsii poverhnost nagreva v gravitationnom pole na krisis puzyrkovogo kipenija zhydkosti. Inzhenerno-Fizicheskij Zhurnal 24(1), 59–66 (1973) (in Russian)Google Scholar
  80. Vishnev, I.P., et al.: Study of heat transfer of boiling of helium on surfaces with various orientations. Heat Transfer-Sov. Res. 8(4), 104–108 (1976)Google Scholar
  81. Wang, C.H., Dhir, V.K.: Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. ASME J. Heat Transfer 115, 659–669 (1993)CrossRefGoogle Scholar
  82. Wörner, W.: Direkte Simulation turbulenter Rayleigh-Benard-Konvektion in flüssigem Natrium, KfK 5228, Kernforschungszentrum Karlsruhe (November 1994)Google Scholar
  83. Yang, J., Cheung, F.B., Rempe, J.L., Suh, K.Y., Kim, S.B.: Critical heat flux for down-ward-facing boiling on a coated hemispherical vessel surrounded by an insulation structure. Nucl. Eng. Technol. 38(2) (2006); Special Issue on ICAPP (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ErlangenGermany

Personalised recommendations