Coolability of Layers of Molten Reactor Material

  • Nikolay Ivanov KolevEmail author


Chapter 15 is devoted to the coolability of layers of molten nuclear reactor material. Such physics is important for designing of stabilization of spread melt in reactor compartments. After defining the problem with its boundary conditions and some simplifying assumptions the system of differential equations describing the process is presented: mass and energy conservation. The following effects are taken into account: the molten steal dropped in the melt or originating inside the melt; the gas release from a sub-layer; the viscous layer; the crust formation; the buoyancy driven convection; the film boiling; the heat conduction through the structures; oxide crust formation on colder heat conducting structures. The existence of a metallic layer is also considered. Some test cases are presented to make easy the application of the presented models: oxide over metal and oxide besides metal. A simple model for gravitational flooding of hot solid horizontal surface by water leading to hyperbolic system is also presented.


Heat Flux Heat Transfer Coefficient Cast Iron Rayleigh Number Metallic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alsmeier, H., et al.: COMMET-Konzept. In: Mühl, B. (ed.) Forschungszentrum Karlsruhe, Technik and Umwelt, Untersuchungen zu auslegungsüberschreitenden Ereignissen (Unfällen) in Leichtwasserreaktoren, ch. 6.1 (März, 1997)Google Scholar
  2. Berenson, P.J.: Film-boiling heat transfer from a horizontal surface. J. Heat Transfer 83, 351–361 (1961)CrossRefGoogle Scholar
  3. Fish, J.D., Pilch, M., Arellano, F.E.: Demonstration of passively-cooled particle-bed core retention. In: Proceedings of the LMFBR Safety Topical Meeting, Lyon, Ecully France, pp. III-327–III-336 (July 1982)Google Scholar
  4. Friedrich, H.J.: SNR-300 Tank external core retention device design and philosophy behind it. In: Coats, R.L. (ed.) The Second Annual Post – Accident Heat Removal (PAHR) Information Exchange, SAND76-9008, November 13-14, p. 333 (1975)Google Scholar
  5. Friedrich, H.J.: Dynamic behavior of SNR-300 core retention device in experimental support of the design concept. In: Baker, L., Bingle, J.D. (eds.) Proceedings of the Third Post-Accident Heat Removal Information Exchange, ANL-78-10, November 2-4 (1977)Google Scholar
  6. Gandrille, P.: Input data for severe accident mitigation measures. Nuclear System Supply System Part, FRA Report EPTA DC 1476, Rev. A (April 4, 1997)Google Scholar
  7. Hübel, H.J.: The safety related criteria and design features for SNR. Proceedings Fast Reactor Safety Meeting, Beverly Hills CONF-740401-P1, pp. 3–21 (April, 1974)Google Scholar
  8. Kolev, N.I.: Transiente Zweiphasenströmung (Transient Two-Phase Flow), ch. 4, pp. 34–38. Springer, Heidelberg (1986)Google Scholar
  9. Kolev, N.I.: External Cooling of EPR 1500 Reactor Vessel under Severe Accident Conditions, Part 1. Buoyancy driven convection, metallic layer dynamics, wall ablation, KWU NA-M/95/E030, Project R&D (April 20, 1995a)Google Scholar
  10. Kolev, N.I.: IVA4 Computer code: The model for a film boiling on a sphere in subcooled, saturated and superheated water. Sub. to the Second International Conference on Multiphase Flow, 1995-Kyoto (April 3-7, 1995b)Google Scholar
  11. Kolev, N.I.: Behaelter zur Aufname und Ausbreitung von Kernschmelze sowie Kernkraftanlage mit einem solchen Behelter, Patentschrift: DE 195 27 462 C1, G21 C/9016, Aktenzeichen: 195 27 462 .8-33, Anmeldetag: 27.7.95, Veröffentlichung der Patenterteilung: 5.12.96. China, Japan, Republik Korea, Russische Föderation, Ukraine, Vereinigte Staaten von Amerika. Europäische Patentschrift EP 0 756 288 B1, G21C 9/016, Veröffentlichung und Bekantmachung des Hinweises auf die Patenterteilung: 22.09.1999 Patentblatt 1999/38, Anmeldenummer: 96112125.8, Anmeldetag: 26.07.1996, Benannte Vertragsstaaten: CH, DE, ES, FI, FR, GB, IT, LI, NL (1995c) Google Scholar
  12. Kolev, N.I.: Gravitational flooding of hot solid horizontal surface by water. Kerntechnik 61, 67–76 (1996)Google Scholar
  13. Kutateladse, S.A.: hydrodynamic theory of changes in the boiling process under free convection conditions. Izv. Akad. Nauk SSSR, Otd. Tech. Nauk, vol. 4, pp. 529–536. AEC-tr-1991 (1951, 1954)Google Scholar
  14. Kolev, N.I.: External cooling Of PWR reactor vessel during severe accident. Kerntechnik 61(2-3), 67–76 (1996), In abbreviated form in Proceedings of ICONE-4, The Fourth International Conference on Nuclear Engineering, New Orleans, USA, March 8–12 (1996) Google Scholar
  15. Kolev, N.I.: IVA4 Layers vol 2 A computer code for analysis of coolability of molten reactor materials spread as a horizontal layers, KWU NA-M/1997/E050, Project R&D (October 6, 1997)Google Scholar
  16. Kolev, N.I.: Verification of the IVA4 film boiling model with the data base of Liu and Theofanous. Proceedings of OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (FCI), JAERI-Tokai Research Establishment, Japan, May 19–21 (1997)Google Scholar
  17. Kolev, N.I.: Computational analysis of transient 3D-melt-water interactions. In: 8th International Conference on Nuclear Engineering, Baltimore, Maryland USA, ICONE-8809, April 2-6 (2000a)Google Scholar
  18. Kolev, N.I.: Needs of industrial fluid dynamics applications. In: 2000 ASME Fluids Engineering Division Summer Meeting (FEDSM), Industry Exchange Program, Sheraton Boston Hotel, Boston, Massachusetts, June 11-15 (2000b) Google Scholar
  19. Kulacki, F.A., Goldstein, R.J.: Thermal convection in a horizontal fluid layer with uniform volumetric energy source. J. Fluid Mech. 55(pt. 2), 271–287 (1972)CrossRefGoogle Scholar
  20. Mayinger, F., Jahn, M., Reineke, H.H.: U. Steinberner, Untersuchung thermodynamischer Vorgänge sowie Wärmeaustausch in der Kernschmelze, Teil 1: Zusammenfassende Darstellung der Ergebnisse, Bundesministerium für Forschung und Technologie, Arbeitsbericht BMFT – RS 48/1 (1975)Google Scholar
  21. Müller, U., Schulenberg, T.: Post accident heat removal research: A state of the art review, KfK 3601, Report Kernforschungszentrum Karlsruhe (November, 1983)Google Scholar
  22. Richard, P., Szabo, I.: In-vessel core retention study: Proposal for a core-catcher concept. In: Proceedings of the ICON 5: 5th International Conference on Nuclear Engineering, Nice, France, ICONE5-2156 (May 26-30, 1997)Google Scholar
  23. Savino, J.M., Siegel, R.: An analytical solution for solidification of moving warm liquid onto an isothermal cold wall. Int. J. Heat Mass Transfer 12, 803–809 (1968)CrossRefGoogle Scholar
  24. Swanson, D.G., Cotton, I., Dhir, V.K.: A Thoria Rubble Bed for Post Accident Core Retention. In: Müller, U., Günter, C. (eds.) Post-Accident Debris Cooling. Proceedings of the Fifth Post Accident Heat Removal Information Exchange Meeting, G. Braun, Karlsruhe, pp. 307–312 (1982, 1983) ISBN3–7650-2034-6Google Scholar
  25. VDI-Wärmeatlas, Berechnungsblätter für den Wärmeübergang, Sechste Auflage, VDI Verlag, Düsseldorf (1991)Google Scholar
  26. Zuber, N., Findlay, J.A.: Averaged volumetric concentration in the two-phase flow systems. J. Heat Transfer 87, 453 (1965)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ErlangenGermany

Personalised recommendations