Core Degradation

  • Nikolay Ivanov Kolev


For insufficient cooling of nuclear reactor core the following processes characterizing the core degradation are identified after years of research, see Potter et al. (1985).

800-900∘C: The cylindrical cladding starts to become plastic. The pressure increase inside the cladding leads to ballooning and following failure, Rose et al. (1979), Chapman et al. (1984), Hindle and Mann (1982), Kerb et al. (1982), Rosinger (1984), Arai et al. (1987);


Molten Pool Pressurize Water Reactor Accident Analysis Boiling Water Reactor Decay Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akers, D.C., et al.: Three mile island Unit 2 Fission product inventory estimate. Nucl. Technol. 87, 205–213 (1989)Google Scholar
  2. Akers, D.W., McCardell, R.K., Russell, M.L., Worku, G.: TMI-2 core materials and fission product inventory. Nucl. Eng. Des. 118, 451 (1990)CrossRefGoogle Scholar
  3. Arai, S., et al.: Failure correlation for Zircaloy-2 fuel cladding under high temperature transient conditions. Nucl. Sci. Technol. 24(2), 214–219 (1987)CrossRefGoogle Scholar
  4. Chapman, R.H., Crowley, J.L., Longest, A.W.: Effect of bundle size an cladding de-formation in LOCA simulation results. In: Zirconium in the Nuclear Industry, Sixth Int Symp, ASTM Spec Tech Publ, vol. 824, p. 693 (1984)Google Scholar
  5. Fauske & Associates Inc., MAAP4-modular accident analysis program for LWR power plants, vol 2, pt 1: Code structure and theory, prepared for Electric Power Research Institute (1994)Google Scholar
  6. Furuta, T., Kawasaki, S.: Acceleration of zircaloy steam reaction by deformation under high temperature transients. J. Nucl. Sci. Technol. 17(3), 243–245 (1980)CrossRefGoogle Scholar
  7. Hayward, P.J., George, I.M.: Dissolution of UO2, in molten zircaloy-4. Part l: Solubility from 2000 to 2200°C. J. Nucl. Mater. 208, 35–42 (1994)CrossRefGoogle Scholar
  8. Hayward, R.L., George, L.M.: Dissolution of UO2, in molten zircaloy-4, Part 2: Phase evolution during dissolution and cooling from 2000 to 2500°C specimens. J.Nucl. Mater. 229, 1–13 (1996)CrossRefGoogle Scholar
  9. Hindle, E.D., Mann, C.A.: An experimental study of the deformation of zircaloy PWR fuel rod cladding under mainly convective cooling. In: Zirconium in the Nuclear Industry, Fifth Int Symp, ASTM Spec Tech Publ, vol. 754, p. 282 (1982)Google Scholar
  10. Hofman, G.L., Hayes, S.L., Petri, M.C.: Temperature gradient driven constituent redistribution, in U-Zr Alloys. J. Nucl. Mater. 227, 277–286 (1996)CrossRefGoogle Scholar
  11. Horst, J.K.: SCDAP/RELAP/MOD2 code manual, vols 1–4, NUREG/CR-5273, EGG-2555 (1990),
  12. Juravkov, A.M., Malyshev, E.K.: Kinetika parometalicheskih v avariynych regimah (review). Otchet Instituta atomnoj energii im. IV Kurchatova, 6–2257, 31sGoogle Scholar
  13. Kerb, E.H., et al.: LWR fuel rod behaviour during reactor tests under loss-of-coolant conditions: Results of the FR-2 in-pile tests. J. Nucl. Mater. 107(1), 55–77 (1982)CrossRefGoogle Scholar
  14. MELCOR 1.8.2, Computer code manual, Reference manuals and programmer’s guides, Sandia National Laboratories, vol. 2 (February 1993)Google Scholar
  15. Moalem, M., Olander, D.R.: The high-temperatures solubility of hydrogen in pure and oxygen-containing zircaloy. J. Nucl. Mater. 178, 61 (1991)CrossRefGoogle Scholar
  16. Olander, D.R.: Materials chemistry and transport modelling for severe accident analysis in light-water reactors III: Fuel dissolution by molten cladding. Nucl. Eng. Des. 162, 257–270 (1996)CrossRefGoogle Scholar
  17. Olsen, C.S., Jensen, S.M., Carlson, E.R., Cook, B.A.: Materials interactions and temperatures in the Three Mile Island Unit 2 core. Nucl. Technol. 87, 57–94 (1989)Google Scholar
  18. Potter, P.E., Rand, M.H., Alcok, C.M.: Some chemical equilibria for accident analysis in pressurized water reactor systems. J. Nucl. Mater. 130, 139–153 (1985)CrossRefGoogle Scholar
  19. Powers, D.A., Brockmann, J.E., Shiver, A.W.: VANESA, a mechanistic model of radionuclide release and aerosol generation during core debris interaction with concrete. NUREG/CR-4308 (July 1986)Google Scholar
  20. Powers, D.A.: Non-ideal solution modeling for predicting chemical phenomena during core debris interactions with concrete, OECD/CSNI Meeting on Core Debris-Concrete Interaction, KTG, Germany, April 1–3 (1992)Google Scholar
  21. Reimann, N.: DEHDIS – Ein Berechnungsmodell zur Aufteilung der Nachwärmeleistung in der metallischen und der oxidischen Phase einer LWR-Kernschmelze und im Containment, IRB-NR 381/81, PNS-Nr 614/81 (August 1981)Google Scholar
  22. Rose, K.M., Mann, C.A., Hindle, E.D.: The axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident. Nucl. Technol 46(2), 220–227 (1979)Google Scholar
  23. Rosinger, H.E.: A model to predict the failure of Zircaloy-4 fuel shearing during postulated LOCA conditions. J. Nucl. Mater. 120(1), 41–54 (1984)CrossRefGoogle Scholar
  24. Shi, S.-Q.: Hydrogen concentration limit and critical temperature for delayed hydride cracking in zirconium alloys. J. Nucl. Mater. 218, 189–201 (1995)CrossRefGoogle Scholar
  25. Une, K., Imamura, M., Amaya, M., Korei, Y.: Fuel oxidation behaviour of defective BWR fuel rods. J. Nucl. Mater. 223, 40–50 (1995)CrossRefGoogle Scholar
  26. Urbanic, V.F., Heidrich, T.R.: High-temperature oxidation of zircaloy-2 and zircaloy-4 in steam. J. Nucl. Mater. 75, 251–261 (1978)CrossRefGoogle Scholar
  27. Veshchunov, M.S., Hofmann, P.: Dissolution of solid UO2 by molten zircaloy. J. Nucl. Mater. 209, 27–40 (1994)CrossRefGoogle Scholar
  28. Veshchunov, M.S., Hofrnann, P.: Modelling of zircaloy dissolution by molten (Ag, In, Cd) absorber alloy. J. Nucl. Mater. 228, 318–329 (1996)CrossRefGoogle Scholar
  29. Vierow, K., Liao, Y., Johnson, J., Kenton, M., Gauntt, R.: Severe accident analysis of a PWR station lackout with the MELCOR, MAAP4 and SCDAP/RELAP5 codes. Nucl. Eng. Des. 234, 129–145 (2004)CrossRefGoogle Scholar
  30. Voltchek, A.: On the modelling of the pellet/cladding/steam interactions in the framework of the oxygen diffusion theory, Institut problem besopasnogo razvitija atomnoj energetiki. preprint no NSI-14-93, str 1-25 (1993)Google Scholar
  31. Yun, J.I., Suh, K.Y., Kang, C.S.: Heat and fission product transport in a molten U-Zr-O pool with crust. In: Proceedings of ICONE10, 10th International Conference on Nuclear Engineering, Arlington, VA, April 14–18 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ErlangenGermany

Personalised recommendations