Skip to main content

Overset DNS with Application to Sound Source Prediction

  • Conference paper
  • First Online:

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 130))

Abstract

In this contribution, we present an application of a computational aeroacoustics code as a hybrid Zonal DNS tool. The extension of the Non-Linear Perturbation Equations (NLPE) with viscous terms is presented as well as information related to the numerical method. The applicability of the simulation tool is illustrated with two testcases, i.e., a 2D circular cylinder in a uniform flow at moderate Reynolds numbers and a 3D decaying flow initialised with Taylor-Green vortices. Both testcases provide results which match well with data reported in literature. The cylinder testcase verifies that the viscous terms are indeed correctly implemented (at least in 2D) and the Taylor-Green vortex case illustrates that the numerical scheme introduced minimal numerical dissipation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Delfs, J.W., Bauer, M., Ewert, R., Grogger, H.A., Lummer, M., Lauke, T.G.W.: Numerical Simulations of Aerodynamic Noise with DLRs aeroacoustic code PIANO, vol. Handbook Version 5.2, (2008)

    Google Scholar 

  2. Ewert, R., Bauer, M., Lummer, M.: A review of state-of-the-art aeroacoustic prediction approaches. In: Dénos, R., Lecomte, E., Kors, E., Schram, C. (eds.) Aircraft Noise, Monograph VKI Lecture Series 2012–02, Aircraft Noise, von Kármán Institute for Fluid Dynamics, Brussels (2012)

    Google Scholar 

  3. Moghadam, M.S.A.: Implementation of viscous terms into the computational aeroacoustics code PIANO. MSc.-thesis TU Braunschweig (2012)

    Google Scholar 

  4. Bailly, C., Bogey, C., Marsden, O.: Progress in direct noise. Int. J. Aeroacoust. 9 (2010)

    Google Scholar 

  5. Terracol, M.: A zonal RANS/LES approach for noise sources prediction. Flow Turbul. Combust. 77 (2006)

    Google Scholar 

  6. Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44 (2008)

    Google Scholar 

  7. Sesterhenn, J.: A characteristic-type formulation of the equations for high order upwind schemes. Comput. Fluids 30 (2001)

    Google Scholar 

  8. Anderson, J.D.: Computational Fluid Dynamics: Basics with Applications. McGraw-Hill, New York (1995)

    Google Scholar 

  9. Schwamborn, D., Gerhold, T., Kessler, R.: DLR-TAU code—an overview. In: 1st ONERA/DLR Aerospace Symposium (1999)

    Google Scholar 

  10. Tam, C.K., Webb, J.C.: Dispersion-relation-preserving fInite difference schemes for computational aeroacoustics. J. Comp. Phys. 107 (1993)

    Google Scholar 

  11. Hu, F.Q., Hussaini, M.Y., Manthey, J.: Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 124 (1996)

    Google Scholar 

  12. Fey, U., König, M., Eckelmann, H.: A new Strouhal-Reynolds-number relationship for the circular cylinder in the range \(47 \le \) Re \(\le 2 \times 10^5\). Phys. Fluids 10 (1998)

    Google Scholar 

  13. Inoue, O., Hatakeyama, N.: Sound generation by a two-dimensional circular cylinder in a uniform flow. J. Fluid Mech. 471 (2002)

    Google Scholar 

  14. Sagaut, P.: Large Eddy Simulation for Incompressible Flows: An Introduction, 3rd edn. Springer, Berlin (2006)

    Google Scholar 

  15. Marsden, O., Bogey, C., Bailly, C.: Direct noise computation of the turbulent flow around a zero-incidence airfoil. AIAA J. 46 (2008)

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the German Science Foundation (DFG) within the Collaborative Research Centre CRC880 (Sonderforschungsbereich 880, SFB880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. D. Akkermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Akkermans, R.A.D., Ewert, R., Moghadam, S.M.A., Dierke, J., Buchmann, N. (2015). Overset DNS with Application to Sound Source Prediction. In: Girimaji, S., Haase, W., Peng, SH., Schwamborn, D. (eds) Progress in Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-319-15141-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15141-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15140-3

  • Online ISBN: 978-3-319-15141-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics